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Abstract. We are considering multicriteria classification that differs from usual classification problems
since it takes into account preference orders in the description of objects by condition and decision
attributes. The well-known methods of knowledge discovery do not use the information about preference
orders in multicriteria classification. It is worthwhile, however, to take this information into account as
many practical problems are involving evaluation of objects on preference ordered domains. To deal with
multicriteria classification we propose to use a Dominance-based Rough Set Approach (DRSA). This
approach is different from the Classical Rough Set Approach (CRSA) because it takes into account
preference orders in the domains of attributes and in the set of decision classes. Given a set of objects
partitioned into pre-defined and preference-ordered classes, the new rough set approach is able to
approximate this partition by means of dominance relations (instead of indiscernibility relations used in
the CRSA). The rough approximation of this partition is a starting point for induction of “if..., then...”
decision rules. The syntax of these rules is adapted to represent preference orders. The DRSA keeps the
best properties of the CRSA: it analyses only facts present in data and possible inconsistencies are not
corrected. Moreover, the new approach does not need any prior discretization of continuous-valued
attributes. The usefulness of the DRSA and its advantages over the CRSA are presented on a real study of
evaluation of the risk of business failure.

This paper presents a conceptual and methodological basis of the software system called 4eMka,
developed at the Laboratory of Intelligent Decision Support Systems of the Institute of Computing
Science, Poznan University of Technology, by a group of students of Computer Science in the framework
of their bachelor’s diploma.

1 Multicriteria classification

In traditional meaning, classification concerns an assignment of a set of objects to a set of pre-defined

classes. The objects are characterized by a set of attributes and the classes are not necessarily ordered

according to a preference. In practice, however, very often the attribute domains and classes are

preference-ordered. The attributes with preference-ordered domains are called criteria. For example,

classification of bank clients from the viewpoint of bankruptcy risk may involve such characteristics as

“return on equity (ROE)”, “return on investment (ROI)” and “return on sales (ROS)”. The domains of
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these attributes are not simply ordered but involve a preference order since, from the viewpoint of bank

managers, greater values of ROE, ROI or ROS are better for clients being analysed for bankruptcy risk.

Neglecting this information in knowledge discovery may lead to wrong conclusions. Consider, for

example, two firms, A and B, evaluated by a set of attributes including ROE. If firm A has a high value of

ROE while firm B has a low value of ROE, and evaluations of these firms on other attributes are equal,

then, from a bankruptcy risk point of view, firm A is better than (dominates) firm B. If, however, in the

data sample set firm A has been assigned to a class of higher risk than firm B, then this is obviously

inconsistent. This inconsistency will not be detected by usual knowledge discovery methods and possible

conclusions derived by them from these data could be: “if ROE of a firm is low, then the firm is safe” and

“if ROE of a firm is high, then the firm is risky”, which is paradoxical. In order to discover this

inconsistency one should analyse the data sample set from the viewpoint of the dominance principle that

requires that an object having a better (in general, not worse) evaluation on considered attributes cannot be

assigned to a worse class.

The above deficiency of knowledge discovery methods in the context of multicriteria classification can be

repaired by proposing concepts and algorithms respecting the dominance principle.

A knowledge discovery method that deals with multicriteria classification is the Dominance-based Rough

Set Approach (DRSA) proposed in (Greco, Matarazzo, Slowinski, 1998, 1999). It generalizes the Classical

Rough Set Approach (CRSA) (Pawlak, 1982, 1991) by substituting the indiscernibility relation, used in

CRSA, by a dominance relation, enabling discovery of inconsistencies with respect to the dominance

principle. DRSA prepares, moreover, a conceptual ground for discovering rules having syntax concordant

with the dominance principle.

2 Dominance-based Rough Set Approach (DRSA)

As it is usual in knowledge discovery methods, in DRSA, information about objects is represented in a

data matrix, in which rows are labelled by objects and represent the values of attributes for each

corresponding object, whereas columns are labelled by attributes and represent the values of each

corresponding attribute for the objects.

Let U denote a finite set of objects (universe), Q a finite set of attributes, V q a domain of the attribute q,

and f(x,q) a function assigning to each pair object-attribute (x,q) a value from V q . The set Q is, in general,

divided into set C of condition attributes and a decision attribute d.

In multicriteria classification, condition attributes are criteria. The notion of criterion involves a

preference order in its domain while the domains of attributes, usually considered in machine discovery,

are not preference-ordered.

Furthermore, decision attribute d makes a partition of U into a finite number of classes Cl={Clt, t∈ T},

T={1,...,n}. Each x∈ U belongs to one and only one class Clt∈ Cl. The classes from Cl are preference-
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ordered according to increasing order of class indices, i.e. for all r,s∈ T, such that r>s, the objects from Clr

are preferred to the objects from Cls.

In multicriteria classification, due to the preference order in the set of classes Cl, the sets to be

approximated are not the particular classes but upward unions and downward unions of classes,

respectively:

�
ts

st ClCl
≥

≥ = , �
ts

st ClCl
≤

≤ = , t=1,...,n.

Union Clt
≥ is the set of objects belonging to class Clt or to a more preferred class, while Clt

≤ is the set of

objects belonging to class Clt or to a less preferred class.

Notice that for t=2,...,n we have Clt
≥ =U- Clt

≤
−1 , i.e. all the objects not belonging to class Clt or better,

belong to class Clt-1 or worse.

Let us remark that in usual classification problems, knowledge discovery methods extract knowledge with

respect to a given class Clt dividing the universe U into class Clt (set of positive examples) and its

complement U-Clt (set of negative examples), t=1,…,n. However, such bipartitions do not take into

account the preference order among classes. Thus, in multicriteria classification we need another type of

bipartitions that divide the universe into upward and downward unions of classes Clt
≥ and Clt

≤
−1 , t=1,…,n.

In result of this division, each object from the upward union Clt
≥ is preferred to each object from the

downward union Clt
≤
−1 . When extracting knowledge with respect to an upward union Clt

≥ , we consider as

positive all objects belonging to Clt
≥ and as negative all objects belonging to Clt

≤
−1 . Analogously, when

extracting knowledge with respect to a downward union Clt
≤
−1 , we consider as positive all objects

belonging to Clt
≤
−1 and as negative all objects belonging to Clt

≥ . In this approach to knowledge discovery

the dominance principle is applied as follows.

Let q� be a weak preference relation on U (often called outranking (see Roy, 1985)) representing a

preference on the set of objects with respect to criterion q; x q� y means “x is at least as good as y with

respect to criterion q”. We say that x dominates y with respect to P⊆ C (or, shortly, x P-dominates y),

denoted by xDPy, if x q� y for all q∈ P. Assuming, without loss of generality, that domains of all criteria

are ordered such that preference increases with the value, xDPy is equivalent to: f(x,q) ≥ f(y,q) for all q∈ P.

Observe that for each x∈ U, xDPx, i.e. P-dominance is reflexive.

Given P⊆ C and x∈ U, the “granules of knowledge” used in DRSA for approximation of the unions Clt
≥

and Clt
≤ are:

• a set of objects dominating x, called P-dominating set, DP
+ (x)={y∈ U: yDPx},
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• a set of objects dominated by x, called P-dominated set, DP
− (x)={y∈ U: xDPy}.

Given a set of criteria P⊆ C, the inclusion of an object x∈ U to the upward union of classes Clt
≥ , t=2,…,n,

creates an inconsistency in the sense of dominance principle if one of the following conditions holds:

• x belongs to class Clt or better but it is P-dominated by an object y belonging to a class worse than Clt,

i.e. x∈ Clt
≥ but )(xDP

+ ∩ ≤
−1tCl ≠∅ ,

• x belongs to a worse class than Clt but it P-dominates an object y belonging to class Clt or better, i.e.

x∉ Clt
≥ but )(xDP

− ∩ Clt
≥ ≠∅ .

If, given a set of criteria P⊆ C, the inclusion of x∈ U to Clt
≥ , t=2,…,n, creates an inconsistency in the

sense of dominance principle, we say that x belongs to Clt
≥ with some ambiguity. Thus, x belongs to Clt

≥

without any ambiguity with respect to P⊆ C, if x∈ Clt
≥ and there is no inconsistency in the sense of

dominance principle. This means that all objects P-dominating x belong to Clt
≥ , i.e. )(xDP

+ ⊆ Clt
≥ .

Furthermore, x could belong to Clt
≥ with respect to P⊆ C if one of the following conditions holds:

1) according to decision attribute d, x belongs to Clt
≥ ,

2) according to decision attribute d, x does not belong to Clt
≥ but it is inconsistent in the sense of

dominance principle with an object y belonging to Clt
≥ .

In terms of ambiguity, x could belong to Clt
≥ with respect to P⊆ C, if x belongs to Clt

≥ with or without

any ambiguity. Due to reflexivity of the dominance relation DP, conditions 1) and 2) can be summarized

as follows: x could belong to class Clt or better, with respect to P⊆ C, if among the objects P-dominated by

x there is an object y belonging to class Clt or better, i.e. )(xDP
− ∩ Clt

≥ ≠∅ .

For P⊆ C, the set of all objects belonging to Clt
≥ without any ambiguity constitutes the P-lower

approximation of Clt
≥ , denoted by )(ClP t

≥ , and the set of all objects that could belong to Clt
≥ constitutes

the P-upper approximation of Clt
≥ , denoted by )(ClP t

≥
:

)(ClP t
≥ ={x∈ U: )(xDP

+ ⊆ Clt
≥ }, )(ClP t

≥
= {x∈ U: )(xDP

− ∩ Clt
≥ ≠∅ }, for t=1,...,n.

Analogously, one can define P-lower approximation and P-upper approximation of Clt
≤ as follows:

)(ClP t
≤ ={x∈ U: )(xDP

− ⊆ Clt
≤ }, )(ClP t

≤
={x∈ U: )(xDP

+ ∩ Clt
≤ ≠∅ }, for t=1,...,n.
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All the objects belonging to Clt
≥ and ≤

tCl with some ambiguity constitute the P-boundary of ≥
tCl and

≤
tCl , denoted by BnP( ≥

tCl ) and BnP( ≤
tCl ), respectively. They can be represented in terms of upper and

lower approximations as follows:

BnP(
≥
tCl )= )(ClP t

≥
- )(ClP t

≥ , BnP(
≤
tCl )= )(ClP t

≤
- )(ClP t

≤ , for t=1,...,n.

P-lower and P-upper approximations of unions of classes Clt
≥ and ≤

tCl have an important property of

complementarity. It says that if object x belongs without any ambiguity to class Clt or better, it is

impossible that it could belong to class Clt-1 or worse, i.e. )( ≥
tClP = U - )( 1

≤
−tClP . Due to complementarity

property, BnP( ≥
tCl ) = BnP(

≤
−1tCl ), for t=2,...,n, which means that if x belongs with ambiguity to class Clt

or better, it also belongs with ambiguity to class Clt-1 or worse.

From the knowledge discovery point of view, P-lower approximations of unions of classes represent

certain knowledge provided by criteria from P⊆ C, while P-upper approximations represent possible

knowledge and the P-boundaries contain doubtful knowledge.

The above definition of rough approximations are based on a strict application of the dominance principle.

However, when defining non-ambiguous objects, it is reasonable to accept a limited proportion of negative

examples, particularly for large data matrices. Such extended version of DRSA is called Variable-

Consistency DRSA model (VC-DRSA) (Greco et al. 2000a).

For every P⊆ C, the objects being consistent in the sense of dominance principle with all upward and

downward unions of classes are P-correctly classified. For every P⊆ C, the quality of approximation of

multicriteria classification Cl by set of criteria P is defined as the ratio between the number of P-correctly

classified objects and the number of all the objects in the data sample set. Since the objects P-correctly

classified are those ones that do not belong to any P-boundary of unions Clt
≥ and ≤

tCl , t=1,...,n, the

quality of approximation of multicriteria classification Cl by set of attributes P, can be written as

( )
( )

( )Ucard

ClBnU
Tt

tP

P

-card

=
�
�
�

�
�
�
�

�
��
�

�
��
�

�

∈

≤
�

Clγ =
( )

( )Ucard

ClBnU
Tt

tP-card �
�
�

�
�
�
�

�
��
�

�
��
�

�

∈

≥
�

.

( )ClPγ can be seen as a measure of the quality of knowledge that can be extracted from the data matrix,

where P is the set of criteria and Cl is the considered classification.

Each minimal subset P⊆ C such that ( )ClPγ = ( )ClCγ is called a reduct of Cl and is denoted by ClRED .

Let us remark that a data sample set can have more than one reduct. The intersection of all reducts is

called the core and is denoted by ClCORE . Criteria from ClCORE cannot be removed from the data

sample set without deteriorating the knowledge to be discovered. This means that in set C there are three

categories of criteria:
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1) indispensable criteria included in the core,

2) exchangeable criteria included in some reducts but not in the core,

3) redundant criteria being neither indispensable nor exchangeable, thus not included in any reduct.

3 Extraction of decision rules

The dominance-based rough approximations of upward and downward unions of classes can serve to

induce a generalized description of objects contained in the data matrix in terms of “if..., then...” decision

rules. For a given upward or downward union of classes, ≥
tCl or ≤

sCl , the decision rules induced under a

hypothesis that objects belonging to )(ClP t
≥ or )( ≤

sClP are positive and all the others negative, suggest an

assignment to “class Clt or better” or to “class Cls or worse”, respectively. On the other hand, the decision

rules induced under a hypothesis that objects belonging to the intersection )()( ≥≤ ∩ ts ClPClP are positive

and all the others negative, are suggesting an assignment to some classes between Cls and Clt (s<t).

In multicriteria classification it is meaningful to consider the following five types of decision rules:

1) certain D≥-decision rules, providing lower profile descriptions for objects belonging to Clt
≥ without

ambiguity: if f(x,q1)≥rq1 and f(x,q2)≥rq2 and …f(x,qp)≥rqp , then x∈ Clt
≥ ,

2) possible D≥-decision rules, providing lower profile descriptions for objects belonging to Clt
≥ with or

without any ambiguity: if f(x,q1)≥rq1 and f(x,q2)≥rq2 and …f(x,qp)≥rqp , then x could belong to Clt
≥ ,

3) certain D≤-decision rules, providing upper profile descriptions for objects belonging to Clt
≤ without

ambiguity: if f(x,q1)≤rq1 and f(x,q2)≤rq2 and ... f(x,qp)≤rqp , then x∈ Clt
≤ ,

4) possible D≤-decision rules, providing upper profile descriptions for objects belonging to Clt
≤ with or

without any ambiguity: if f(x,q1)≤rq1 and f(x,q2)≤rq2 and ... f(x,qp)≤rqp , then x could belong to Clt
≤ ,

5) approximate D≥≤-decision rules, providing simultaneously lower and upper profile descriptions for

objects belonging to Cls∪ Cls+1∪ …∪ Clt without possibility of discerning to which class: if f(x,q1)≥rq1

and f(x,q2)≥rq2 and ... f(x,qk)≥rqk and f(x,qk+1)≤rqk+1 and ... f(x,qp)≤rqp , then x∈ Cls∪ Cls+1∪ …∪ Clt,

In the left hand side of a D≥≤-decision rule we can have “f(x,q)≥rq” and “f(x,q)≤r'q”, where rq≤r'q, for the

same q∈ C. Moreover, if rq=r'q, the two conditions boil down to “f(x,q)=rq”.

Since a decision rule is an implication, by a minimal rule we understand such an implication that there is no

other implication with the left hand side (LHS) of at least the same weakness (in other words, rule using a

subset of elementary conditions or/and weaker elementary conditions) and the right hand side (RHS) of at

least the same strength (in other words, rule assigning objects to the same union or sub-union of classes).
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The rules of type 1) and 3) represent certain knowledge extracted from the data matrix, while the rules of

type 2), 4) represent possible knowledge, and rules of type 5) represent doubtful knowledge.

The rules of type 1) and 3) are exact, if they do not cover negative examples, and they are probabilistic,

otherwise. In the latter case, each rule is characterized by a confidence ratio, representing the probability

that an object matching LHS of the rule matches also its RHS. Probabilistic rules are concordant with the

VC-DRSA model mentioned above.

Let us comment application of decision rules to the objects described by criteria from C. When applying

D≥-decision rules to object x, it is possible that x either matches LHS of at least one decision rule or does

not match LHS of any decision rule. In the case of at least one matching, it is reasonable to conclude that x

belongs to class Clt, being the lowest class of the upward union Clt
≥ resulting from intersection of all RHS

of rules covering x. Precisely, if x matches LHS of rules ρ1, ρ2,…,ρm, having RHS x∈ Clt
≥
1 , x∈ Clt

≥
2 ,…,

x∈ Cltm
≥ , then x is assigned to class Clt, where t=max{t1,t2,…,tm}. In the case of no matching, it is

concluded that x belongs to Cl1, i.e. to the worst class, since no rule with RHS suggesting a better

classification of x is covering this object.

Analogously, when applying D≤-decision rules to object x, it is concluded that x belongs either to class Clz,

being the highest class of the downward union Clt
≤ resulting from intersection of all RHS of rules covering

x, or to class Cln, i.e. to the best class, when x is not covered by any rule. Precisely, if x matches the LHS of

rules ρ1, ρ2,…,ρm, having RHS x∈ Clt
≤
1 , x∈ Clt

≤
2 ,…, x∈ Cltm

≤ , then x is assigned to class Clt, where

t=min{t1,t2,…,tm}.

Finally, when applying D≥≤-decision rules to object x, it is concluded that x belongs to the union of all

classes suggested in RHS of rules covering x.

A set of decision rules is complete if it is able to cover all objects from the data matrix in such a way that

consistent objects are re-classified to their original classes and inconsistent objects are classified to clusters

of classes referring to this inconsistency. We call minimal each set of decision rules that is complete and

non-redundant, i.e. exclusion of any rule from this set makes it non-complete.

One of three induction strategies can be adopted to obtain a set of decision rules (Stefanowski and

Vanderpooten, 1994; Stefanowski, 1998):

• generation of a minimal description, i.e. a minimal set of rules,

• generation of an exhaustive description, i.e. all rules for a given data matrix,

• generation of a characteristic description, i.e. a set of rules covering relatively many objects each,

however, all together not necessarily all objects from U.
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In the following we present a rule induction algorithm, called DOMLEM (Greco, Matarazzo, Slowinski

and Stefanowski, 2000b), built on the idea of LEM2 (Grzymala-Busse, 1992) and generating a minimal

description.

In the algorithm, E denotes a complex (conjunction of elementary conditions e) being a candidate for LHS

of the rule. Moreover, [E] denotes a set of objects matching the complex E. Complex E is accepted as LHS

of the rule iff BeE
Ee

⊆=≠∅
∈
� ][][ , where B is the considered approximation corresponding to RHS of the

rule. For the sake of simplicity, in the following we present the general scheme of the DOMLEM algorithm

for type 1) decision rules.

Procedure DOMLEM

(input: L– a family of P-lower approximations of upward unions of classes: { )(ClP t
≥ , )( 1

≥
−tClP ,

…, )( 2
≥ClP }, where P⊆ C;

output: R≥ set of D≥-decision rules);

begin
R≥:= ∅ ;

for each B∈ L do

begin
E:=find_rules(B);

for each rule E ∈ E do

if “if E, then x∈ Cl s
≥ ” is a minimal rule then R≥ := R≥ ∪ E;

end

end.

Function find_rules
(input: a set B;

output: a set of rules E covering set B);

begin
G := B; {a set of objects from the given approximation}

E := ∅ ;

while G ≠ ∅ do

begin

E := ∅ ; {starting complex}

S := G; {set of objects currently covered by E}

while (E = ∅ ) or not ([E] ⊆ B) do

begin

best := ∅ ; {best candidate for elementary condition}

for each criterion qi ∈ P do

begin

Cond:={(f(x,qi)≥rqi) : ∃ x∈ S (f(x,qi)=rqi)};

{for each positive object from S create an elementary condition}

for each elem ∈ Cond do

if evaluate({elem}∪ E) is_better_than evaluate({best}∪ E) then best:=elem;

{evaluate if new condition is better than previous best};
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end;

E := E ∪ {best};

S := S ∩ [best];

end; {while not ([E] ⊆ B)}

for each elementary condition e ∈ E do

if [E − {e}] ⊆ B then E := E − {e};

T := T ∪ {E};

G := B – [ ]� E∈E E ;

end; {while G ≠ ∅ }

create rules on the basis of E

end {function}

Let us comment the choice of the best condition using the function evaluate(E). Complex E, being a

candidate LHS for a rule can be evaluated by various measures. In the current version of DOMLEM the

complex E with the highest ratio |[E] ∩ G|/|[E]| is considered the best. In case of tie, the complex E with

the highest value of |[E] ∩ G| is chosen.

The procedure of rule extraction makes evidence of the utility of the concept of inconsistency in the sense

of the dominance principle in knowledge discovery process. Decision rules are created by appending

descriptors to a complex until a consistency is reached. For instance, in the case of type 1) decision rules,

the descriptors are appended until there is no object dominating the complex while not belonging to the

upward union of classes indicated in RHS of the rule being created. The concept of inconsistency is

similarly applied in calculation of reducts. These remarks justify the use of DRSA in the discovery of

rules and reducts even if there is no inconsistency in sample data set for the complete set of criteria C.

4 Example

To illustrate application of DRSA to multicriteria classification we will use a part of data provided by a

Greek industrial bank ETEVA which finances industrial and commercial firms in Greece (Slowinski and

Zopounidis, 1995). A sample composed of 39 firms has been chosen for the study in co-operation with the

ETEVA’s financial manager. The manager has classified the selected firms into three classes of the

bankruptcy risk. The sorting decision is represented by decision attribute d making a trichotomic partition

of the 39 firms:

• d=A means “acceptable”,

• d=U means “uncertain”,

• d=NA means “non-acceptable”.

The partition is denoted by Cl={ClA, ClU, ClNA} and, obviously, class ClA is better than ClU which is better

than ClNA.

The firms were evaluated using the following twelve criteria (↑ means preference increasing with value

and ↓ means preference decreasing with value):
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• A1 = earnings before interests and taxes/total assets, ↑

• A2 = net income/net worth, ↑

• A3 = total liabilities/total assets, ↓

• A4 = total liabilities/cash flow, ↓

• A5 = interest expenses/sales, ↓

• A6 = general and administrative expense/sales, ↓

• A7 = managers' work experience, ↑ (very low=1, low=2, medium=3, high=4, very high=5),

• A8 = firm's market niche/position, ↑ (bad=1, rather bad=2, medium=3, good=4, very good=5),

• A9 = technical structure-facilities, ↑ (bad=1, rather bad=2, medium=3, good=4, very good=5),

• A10 = organization-personnel, ↑ (bad=1, rather bad=2, medium=3, good=4, very good=5),

• A11 = special competitive advantage of firms, ↑ (low=1, medium=2, high=3, very high=4),

• A12 = market flexibility, ↑ (very low=1, low=2, medium=3, high=4, very high=5).

The first six criteria are continuous (financial ratios) and the last six are ordinal. The data matrix is

presented in table 1.

Table 1. Financial data matrix

Firm A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 d

F1 16.4 14.5 59.82 2.5 7.5 5.2 5 3 5 4 2 4 A

F2 35.8 67.0 64.92 1.7 2.1 4.5 5 4 5 5 4 5 A

F3 20.6 61.75 75.71 3.6 3.6 8.0 5 3 5 5 3 5 A

F4 11.5 17.1 57.1 3.8 4.2 3.7 5 2 5 4 3 4 A

F5 22.4 25.1 49.8 2.1 5.0 7.9 5 3 5 5 3 5 A

F6 23.9 34.5 48.9 1.7 2.5 8.0 5 3 4 4 3 4 A

F7 29.9 44.0 57.8 1.8 1.7 2.5 5 4 4 5 3 5 A

F8 8.7 5.4 27.4 3.3 4.5 4.5 5 2 4 4 1 4 A

F9 25.7 29.7 46.8 1.7 4.6 3.7 4 2 4 3 1 3 A

F10 21.2 24.6 64.8 3.7 3.6 8.0 4 2 4 4 1 4 A

F11 18.32 31.6 69.3 4.4 2.8 3.0 4 3 4 4 3 4 A

F12 20.7 19.3 19.7 0.7 2.2 4.0 4 2 4 4 1 3 A

F13 9.9 3.5 53.1 4.5 8.5 5.3 4 2 4 4 1 4 A

F14 10.4 9.3 80.9 9.4 1.4 4.1 4 2 4 4 3 3 A

F15 17.7 19.8 52.8 3.2 7.9 6.1 4 4 4 4 2 5 A

F16 14.8 15.9 27.94 1.3 5.4 1.8 4 2 4 3 2 3 A

F17 16.0 14.7 53.5 3.9 6.8 3.8 4 4 4 4 2 4 A

F18 11.7 10.01 42.1 3.9 12.2 4.3 5 2 4 2 1 3 A

F19 11.0 4.2 60.8 5.8 6.2 4.8 4 2 4 4 2 4 A

F20 15.5 8.5 56.2 6.5 5.5 1.8 4 2 4 4 2 4 A

F21 13.2 9.1 74.1 11.21 6.4 5.0 2 2 4 4 2 3 U

F22 9.1 4.1 44.8 4.2 3.3 10.4 3 4 4 4 3 4 U

F23 12.9 1.9 65.02 6.9 14.01 7.5 4 3 3 2 1 2 U
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F24 5.9 -27.7 77.4 -32.2 16.6 12.7 3 2 4 4 2 3 U

F25 16.9 12.4 60.1 5.2 5.6 5.6 3 2 4 4 2 3 U

F26 16.7 13.1 73.5 7.1 11.9 4.1 2 2 4 4 2 3 U

F27 14.6 9.7 59.5 5.8 6.7 5.6 2 2 4 4 2 4 U

F28 5.1 4.9 28.9 4.3 2.5 46.0 2 2 3 3 1 2 U

F29 24.4 22.3 32.8 1.4 3.3 5.0 2 3 4 4 2 3 U

F30 29.7 8.6 41.8 1.6 5.2 6.4 2 3 4 4 2 3 U

F31 7.3 -64.5 67.5 -2.2 30.1 8.7 3 3 4 4 2 3 NA

F32 23.7 31.9 63.6 3.5 12.1 10.2 3 2 3 4 1 3 NA

F33 18.9 13.5 74.5 10.0 12.0 8.4 3 3 3 4 3 4 NA

F34 13.9 3.3 78.7 25.5 14.7 10.1 2 2 3 4 3 4 NA

F35 -13.3 -31.1 63.0 -10.0 21.2 23.1 2 1 4 3 1 2 NA

F36 6.2 -3.2 46.1 5.1 4.8 10.5 2 1 3 3 2 3 NA

F37 4.8 -3.3 71.9 34.6 8.6 11.6 2 2 4 4 2 3 NA

F38 0.1 -9.6 42.5 -20.0 12.9 12.4 1 1 4 3 1 3 NA

F39 13.6 9.1 76.0 11.4 17.1 10.3 1 1 2 1 1 2 NA

The main questions to be answered by the knowledge discovery process were the following:

• Is the information contained in table 1 consistent ?

• What are the reducts of criteria ensuring the same quality of approximation of the multicriteria

classification as the whole set of criteria ?

• What decision rules can be extracted from table 1 ?

• What are the minimal sets of decision rules?

We have answered these questions using the Dominance-based Rough Set Approach.

The first result of the DRSA is a discovery that the financial data matrix is consistent for the complete set

of criteria C. Therefore, the C-lower approximation and C-upper approximation of Cl NA
≤ , ClU

≤ and ClU
≥ ,

Cl A
≥ are the same. In other words, the quality of approximation of all upward and downward unions of

classes is equal to 1.

The second discovery is a set of 18 reducts of criteria ensuring the same quality of classification as the

whole set of 12 criteria:

1
ClRED ={A1, A4, A5, A7}, 2

ClRED ={A2, A4, A5, A7}, 3
ClRED ={A3, A4, A6, A7},

4
ClRED ={A4, A5, A6, A7}, 5

ClRED ={A4, A5, A7, A8}, 6
ClRED ={A2, A3, A7, A9},

7
ClRED ={A1, A3, A4, A7, A9}, 8

ClRED ={A1, A5, A7, A9}, 9
ClRED ={A2, A5, A7, A9},

10
ClRED ={A4, A5, A7, A9}, 11

ClRED ={A5, A6, A7, A9}, 12
ClRED ={A4, A5, A7, A10},

13
ClRED ={A1, A3, A4, A7, A11}, 14

ClRED ={A2, A3, A4, A7, A11}, 15
ClRED ={A4, A5, A6, A12},

16
ClRED ={A1, A3, A5, A6, A9, A12}, 17

ClRED ={A3, A4, A6, A11, A12}, 18
ClRED ={A1, A2, A3, A6, A9, A11, A12}.
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All above subsets of criteria are equally good and sufficient for perfect approximation of the classification

performed by ETEVA’s financial manager on the 39 firms. The core of Cl is empty (CORECl =∅ ) which

means that no criterion is indispensable for the approximation. Moreover, all the criteria are exchangeable

and no criterion is redundant.

The third discovery is the set of all decision rules. We obtained 74 rules describing Cl NA
≤ , 51 rules

describing ClU
≤ , 75 rules describing ClU

≥ and 79 rules describing Cl A
≥ .

The fourth discovery is the finding of minimal sets of decision rules. Several minimal sets were found;

one of them is shown below (in parenthesis there is the number of objects supporting the rule):

1) if f(x,A3)≥67.5 and f(x,A4)≥-2.2 and f(x,A6)≥8.7, then x∈ Cl NA
≤ , (4),

2) if f(x,A2)≤3.3 and f(x,A7)≤2, then x∈ Cl NA
≤ , (5),

3) if f(x,A3)≥63.6 and f(x,A7)≤3 and f(x,A9)≤3, then x∈ Cl NA
≤ , (4),

4) if f(x,A2)≤12.4 and f(x,A6)≥5.6, then x∈ ClU
≤ , (14),

5) if f(x,A7)≤3, then x∈ ClU
≤ , (18),

6) if f(x,A2)≥3.5 and f(x,A5)≤8.5, then x∈ ClU
≥ , (26),

7) if f(x,A7)≥4, then x∈ ClU
≥ , (21),

8) if f(x,A1)≥8.7 and f(x,A9)≥4, then x∈ ClU
≥ , (27),

9) if f(x,A2)≥3.5 and f(x,A7)≥4, then x∈ Cl A
≥ , (20).

As the minimal set of rules is complete and composed of D≥-decision rules and D≤-decision rules only,

application of these rules to the 39 firms will result in their exact re-classification to classes of risk.

Minimal sets of decision rules represent the most concise and non-redundant knowledge representations.

The above minimal set of 9 decision rules uses 8 attributes and 18 elementary conditions, i.e. 3.85% of

descriptors from the data matrix.

5 Comparison with other classification methods

None of machine discovery methods can deal with multicriteria classification because they do not consider

preference orders in the domains of attributes and among the classes. Within multicriteria decision

analysis there exist methods for multicriteria classification, however, they are not discovering

classification patterns from data; they simply apply a preference model, like utility function in scoring

methods (see e.g. Thomas et al., 1992), to a set of objects to be classified. In this sense, they are not

knowledge discovery methods.

Comparing DRSA to CRSA, one can notice the following differences between the two approaches. CRSA

extracts knowledge about a partition of U into classes which are not preference-ordered; the granules used

for knowledge representation are sets of objects indiscernible by a set of condition attributes.
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In case of DRSA and multicriteria classification, the condition attributes are criteria and classes are

preference-ordered. The extracted knowledge concerns a collection of upward and downward unions of

classes and the granules used for knowledge representation are sets of objects defined using dominance

relation. This is the main difference between CRSA and DRSA.

There are three most remarkable advantages of DRSA over CRSA. The first one is the ability of handling

criteria, preference-ordered classes and inconsistencies in the set of decision examples that CRSA is not

able to discover – inconsistencies in the sense of violation of the dominance principle. In consequence, the

rough approximations separate the certain part of information from the doubtful one, which is taken into

account in rule induction. The second advantage is the analysis of a data matrix without any preprocessing

of data, in particular, any discretization of continuous attributes. The third advantage of DRSA lies in a

richer syntax of decision rules induced from rough approximations. The elementary conditions (criterion

rel. value) of decision rules resulting from DRSA use rel.∈ {≤,=,≥}, while those resulting from CRSA use

rel.∈ {=}. The DRSA syntax is more understandable to practitioners and makes the representation of

knowledge more synthetic, since minimal sets of decision rules are smaller than minimal sets of decision

rules resulting from CRSA.

6 Conclusion

Multicriteria classification differs from usual classification problems since it involves preference orders in

domains of attributes and in the set of classes. This requires that a knowledge discovery method applied to

multicriteria classification respects the dominance principle. As this is not the case of nowadays methods

of Data Mining and Knowledge Discovery, they are not able to discover all relevant knowledge contained

in the analysed data sample set and, even worse, they may yield unreasonable discoveries, because

inconsistent with the dominance principle. These deficiencies are repaired in DRSA based on the concept

of rough approximations consistent with the dominance principle.
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