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Motivation: a use case

• Consider a real-world business process, e.g.,
• Manufacturing of a product

• Delivery of goods

• Goal #1: Simulation, e.g.,
• To estimate operating costs

• To estimate production volume

• Goal #2: Optimization, e.g.,
• To minimize operating costs

• To maximize production volume

• To achieve these goals one needs a mathematical 
model of the business process
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A Mathematical Programming (MP) Model

• Variables
• Represent the input, output and parameters of the business process

• Specified with domains: Real, Integer, Binary etc.

• Objective function
• The goal to achieve 

• Constraints
• Specify relationships between variables, e.g., operating conditions

• Manual construction is time-consuming:

• Requires deep insight into the business process

• Requires transformation to form accepted by a solver, e.g., linear

• Humans are error-prone and errors in constraints are expensive

• Simulation and optimization achieved using solvers, e.g.,
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MODEL SYNTHESIS 
PROBLEM
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General Model Synthesis Problem

• Input:
• Examples of states (values of variables)

• Acquired by e.g., recording operations of the process

• A class of MP model to synthesize

• E.g., Linear Programming, Quadratic Programming, etc. 

• Output:
• An objective function representing the outcome of the business process

• A set of constraints comply with the examples
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This is a classification problem



Problem decomposition

• The syntheses of an objective function and the constraints are 
largely independent

• The constraints define what is the feasible solution, and the 
objective function assesses the quality of this solution

• A single set of constraints can made up an MP model with an 
arbitrary objective function: 
• It does not matter for the constraints whether an objective function 

calculates a time cost, monetary profit, or waste of a material

• The synthesis of the objective function as a regression against a 
specific variable of the problem has many existing solutions

• The synthesis of the constraints surprisingly gained only a little 
attention in the state-of-the-art works
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Two-Class Constraint Synthesis Problem 
(2-CSP)
• Input:

• Set X of examples x labeled as

• Feasible – represent the states reached during normal execution

• Infeasible – erroneous, faulty or undesired states

• A class of constraints to synthesize

• E.g., linear, quadratic, etc.

• Output:
• A set C of constraints in the form of

p(x) ≤ a

• Where p(x) is a function of the given class and a is a constant

• Such that

• The number of feasible examples satisfying all constraints in C is maximized (true 
positives)

• The number of infeasible examples violating at least one constraint in C is maximized 
(true negatives)
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2-CSP is NP-hard

• The problem of determining whether two sets of examples are 
separable using a fixed number of k ≥ 2 linear constraints is NP-
complete [1]. 

• It is NP-complete even if k is not fixed but bounded by the square of 
the number of dimensions n, i.e.,  2 ≤ k ≤ n2 [2]. 

• In consequence, synthesizing k ≥ 2 linear constraints, where k is 
either fixed or bounded by n2 , is NP-hard. 

• The complexity of learning k ≥ 2 non-linear constraints is an open 
question. 

[1] Nimrod Megiddo, "On the complexity of polyhedral separability", 
Discrete & Computational Geometry 3, 4 (1988), pp. 325 – 337.

[2] Avrim L. Blum and Ronald L. Rivest, "Training a 3-node neural
network is NP-complete", Neural Networks 5, 1 (1992), pp. 117 – 127.
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One-Class Constraint Synthesis Problem 
(1-CSP)
• Input:

• Set X of examples x

• No labels

• The examples are assumed to represent feasible states

• A class of constraints to synthesize

• E.g., linear, quadratic, etc.

• Output:
• A set C of constraints in the form of

p(x) ≤ a

• Where p(x) is a function of the given class and a is a constant

• Such that

• The number of feasible examples satisfying all constraints in C is maximized (true 
positives)

• The margin of the constraints to the closest examples is minimized
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Properties of 1-CSP

• This is a one-class classification problem

• Time-complexity of 1-CSP for k ≥ 2 constrains is an open question

• Assuming linear constraints, the convex hull co(X) is the optimal 
solution, because:
• All examples from X are included in co(X),
• The margin is 0 for all constraints, as the examples are the vertexes of 

co(X)

• The number of facets of a convex hull grows exponentially with 
dimensionality n, and so the time of calculating co(X)
• Unfortunately, I have no formal proof for time-complexity w.r.t. n.
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Convex hull is not the best solution when 
generalization is under consideration

• An optimal solution of an LP model made of
• Convex hull-based constraints

• Any linear objective function

is an example from the training set X 

• Hence: 
• Optimization of a convex hull-based LP model is futile

• We cannot find a solution that we have not known before

• Also, it is often more efficient to enumerate the known solutions from X 
than actually solving an LP model with a large number of constraints

• In general:
• Too tight constraints limit generalization and may cause an optimal 

solution to be suboptimal in practice

• Too loose constraints are detrimental too, as they may allow for solutions 
that happen inapplicable in practice
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The curse of dimensionality

• Assume that:
• The optimal solution is a constraint resembling an n-ball centered in y

with radius r and volume 

• An algorithm produces a constraint resembling an n-ball centered in y, 
but commits an error in the radius by extending it by infinitely small 

• Then:
• The volume of the synthesized n-ball is 

• It is exponentially with n greater than the volume of the optimal n-ball

• The volume of the margin between the n-balls grows exponentially with n

• In high dimensions, an apparently negligible error in a constraint
may cause dramatic deterioration of virtually any data-set-backed 
performance measure for this constraint, as the margin between it 
and the optimal constraint may include exponential number of 
examples
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Synthetic performance assessment
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• Synthetic benchmarks – MP models with parameters:
• n – number of variables
• k – number of alternative subsets of constraints

• Training sets
• 1-CSP: Feasible examples uniformly sampled from feasible region of an MP 

model

• 2-CSP: Feasible and infeasible examples uniformly sampled from the Cartesian 
product of domains of variables

• Test sets
• Feasible and infeasible examples uniformly sampled from the Cartesian 

product of domains of variables

• Data-based measures of fidelity
• E.g., accuracy, F1-score,…

• Syntactic measures of fidelity
• E.g., angles between the corresponding constraints in the synthesized and the 

benchmark MP models



Examples of benchmarks
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where:
L is a big constant
d is a parameter = 2.7



Performance assessment on real-world 
problems
• Let there be a data set of states achieved by a business process

• General workflow consists of four steps:
1. Synthesize a set of constraints from the data set

2. Attach an objective function

• A regression model calculated using the data set, or

• A known objective function

3. Optimize the MP model

4. Validate the optimal solution with the data set

• E.g., assess similarity to the one or more most similar examples
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Challenges for assessing an MP model 
for a real-world business process
• 1-CSP:

• The data set consists of feasible examples only
• False positives and True negatives are 0 for any MP model
• So, most of the performance measures typical to Machine Learning are biased or cannot 

be calculated

• 1-CSP & 2-CSP:
• The optimal solution of an MP model usually lies on a constraint

• In particular, this holds for all Linear Programming models
• In statistical sense, the optimal solution is an outlier – it lies on the boundary of a 

distribution of feasible solutions
• From the optimization point of view, there is no reason to reward the MP model for the 

interior of its feasible region; only the boundary matters
• Hence, assessment of an MP model using a test set is futile:

• The test set-based measures (usually) reward the MP model equally for each example
• The test set is a sample of the space that may be far from the boundary of the feasible 

region

• 2-CSP:
• The data set is often imbalanced, as infeasible states like errors and faults are avoided

• The actual MP model is unknown
• We are unable to calculate syntactic measures of fidelity
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ALGORITHMS
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Solving 2-CSP using Mixed-Integer 
Linear Programming (MILP)
• The general idea is to encode the 2-CSP using a MILP problem and 

solving optimally

• Ockham’s razor:
• The objective is to find the minimal set of constraints that separate the 

sets of feasible and infeasible examples

• Misclassification is disallowed

• The algorithm synthesizes LP models and user-defined classes of 
NLP models

Tomasz P. Pawlak, Krzysztof Krawiec, Automatic synthesis of 
constraints from examples using mixed integer linear programming, 
European Journal of Operational Research 261 (2017) 1141-1157. 
IF=3.297, 40p MNiSW
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Encoding 2-CSP using MILP
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Jaccard indexes of the feasible regions of 
the synthesized and the actual MP models
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Mean angles between the corresponding constraints 
in the synthesized and the actual MP models
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Modeling of concrete

• Based on the slump test data-set [1]

[1] Yeh, I.-C. (2007). Modeling slump flow of concrete using second-
order regressions and artificial neural networks. Cement and 
Concrete Composites, 29(6), 474–480. 
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Conclusions

• Solving a MILP problem is NP-hard and so we had to terminate 
solver prematurely for large problem instances

• The algorithm overfits and is susceptible to noise
• The MILP problem is aimed at minimizing model complexity while 

guarantying separation of the feasible and the infeasible examples

• The feasible region is often overestimated
• The algorithm strives to use as simple constraints as possible and in the 

effect the feasible region features many outlying vertexes

• The training set is typically imbalanced with higher share of the 
feasible examples, while the algorithm requires higher share of the 
infeasible examples to avoid overestimating the feasible region
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GENETICS: Genetic Programming 
Constraint Synthesis for 2-CSP
• Representation

• An individual C is a set of constraints
• A constraint is an Abstract Syntax Tree (AST)

• Strongly-typed Genetic Programming
• Tree root is one of ≤, =, ≥
• ≤, =, ≥ accept any other instructions as arguments

• Instruction sets
• For Linear Programming models:

• +, -, ×, xi, 1, ERC
where × is multiplication that accepts +, -, 1, ERC as its left-hand argument

• For polynomial models:
• +, -, ×, *, x2, xi, 1, ERC

where * accepts all instructions as arguments

Tomasz P. Pawlak, Krzysztof Krawiec, Synthesis of Mathematical 
Programming Constraints with Genetic Programming, EuroGP 2017, 
Lecture Notes in Computer Science 10196:178-193, Springer, 2017.

C =

≤

1+

x1 x2

≥

-2

x1 x2
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GENETICS: Fitness function

• Assessment of C on example x is:
• For a feasible example x:

• The number of constraints in C violated on x

• For an infeasible example x:

• 1 if all constraints in C are met for x, 0 otherwise

• Parsimony pressure tests
• Minimize the number of constraints in C

• Minimize the total number of nodes in constraints in C

• Assessment of C is a vector of assessments on examples and parsimony 
pressure tests
• Lexicase selection runs on these vectors

• The best-of-run individual C minimizes a sum of vector elements
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GENETICS: GP operators

• Ramped Half-and-Half (RHH) initialization
• Grow and Full build individual constraints

• Total number of constraints initialized in C is parameterized:

• Grow draws it from the parameterized range

• Full uses the maximum in that range

Grow-initialized individual 
with three constraints

Full-initialized individual 
with five constraints

Feasible region
28



GENETICS: GP operators

• Constraint Tree Crossover (CTX) 
• Draws one constraint from each parent C1 and C2

• Runs Tree Swapping Crossover and inserts crossed-over constraints into 
corresponding offspring C1

’ and C2
’

• Constraint Tree Mutation (CTM)
• Initializes a random individual Cr using RHH

• Runs CTX for the given parent C and Cr and returns one of resulting 
offspring

C1 C2 C1’ C2’ 29



GENETICS: GP operators

• Constraint Swapping Crossover (CSX)
• Given two parents C1 and C2, their constraints are randomly assigned to 

two offspring C1
’ and C2

’

• Constraint Swapping Mutation (CSM)
• Initializes a random individual Cr using RHH

• Runs CSX for the given parent C and Cr and returns one of resulting 
offspring

C1 C2 C1’ C2’ 30



GENETICS: GP operators

• Gaussian Constant Mutation (GCM)
• Draws a constant c from each constraint in the given parent C 

• Replaces c with c’~N(c, 1)

C C’ 31



Feasible region

GENETICS: Post-processing

• Remove redundant constraints from the best-or-run individual:
• A constraint is redundant if for all solutions it is either satisfied or another 

violated constraint exists

Violates red
constraint only Violates green 

constraint only

Violates red and 
blue constraints

Violates green and 
blue constraints

Violates green, blue and red constraints

No region contains solutions that violate blue constraint only:
Blue constraint is redundant. 32



Mean Jaccard index of the feasible regions of 
the synthesized and the actual MP models
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GENETICS: Conclusions

• The test-set results are better than for MILP-based method

• GENETICS still overestimates the feasible region

• Synthesized constraints have different syntax than the actual ones
• GENETICS produces one out of many alternative models that fit training set

• Curse of dimensionality
• When the number of variables becomes large GENETICS achieves worse 

results

• Larger training set improves performance
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Genetic One-Class Constraint Synthesis 
(GOCCS)
• An equivalent of GENETICS for 1-CSP

• Representation and operators are mostly the same

• The main differences consist of:
• Validation set of unlabeled examples sampled prior to evolutionary run 

• The unlabeled examples are located from the known feasible examples

• Two optimization criteria, both maximized:

• The number of true positives

• The number of true negatives

• NSGA-II post-selection instead of Lexicase selection

Tomasz P. Pawlak, Krzysztof Krawiec, Synthesis of Constraints for 
Mathematical Programming with One-Class Genetic Programming, 
IEEE Transactions on Evolutionary Computation, IEEE Press, 2018. 
IF=10.629, 50p MNiSW
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Mean angle between the corresponding 
constraints in the synthesized and the actual MP 
models
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Mean sensitivity (D) and specificity (E) 
on test-set
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GOCCS vs GENETICS: mean 
accuracy on test-set

• Training set of mf = 500 feasible 
examples

• mi is the number of extra 
infeasible examples supplied to 
the training set for GenetiCS
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Modeling of Wine Quality

• Wine Quality data set [1]
• 11 physiochemical attributes of wine

• A quality assessment [0-10] calculated as the median of the assessments made 
by at least three sensory assessors

• 1599 red wine examples, 4898 white wine examples

• 1-CSP

[1] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling wine preferences by 
data mining from physicochemical properties” Decision Support Systems 47(4):547-553, 2009.39



Wine QP models

Red wine White wine
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The optimal solutions to the wine models

• Due to FSD > TSD in the optimal solution, we added extra 
constraints for the red wine model:

• They are based on the evidence in the data set that
min TSD – FSD = 3 and max FSD/TSD = 0.8571
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GOCCS: Conclusions

• GOCCS has good performance on low-dimensional 1-CSP
• E.g., up to 6 – 7 variables

• GOCCS underestimates the feasible region

• GOCCS is susceptible to the curse of dimensionality

• The synthesized NLP models are oversize, however LP models have 
correct size 
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Constraint Synthesis with C4.5 (CSC4.5) 
for 1-CSP
• General idea: Build a decision tree and transform it to a MILP model

• Patryk Kudła, Tomasz P. Pawlak, One-class synthesis of constraints for 
Mixed-Integer Linear Programming with C4.5 decision trees, Applied Soft 
Computing 68 (2018) 1-12. IF=3.541, 40p MNiSW
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A decision tree is a MILP model
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CSC4.5 Results

• a
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Theoretical minimum 0.072rad



Modeling of Wine Quality

• The same Wine Quality data set 
• Divided into training set and test set in roughly 50%:50%

• Test set supplemented with unlabeled likely infeasible examples

• Red wine MIQP model
• 517 constraints

• 171 auxiliary binary variables

• Jaccard index of feasible region calculated on test set: 0.90

• White wine MIQP model
• 1373 constraints

• 484 auxiliary binary variables

• Jaccard index of feasible region calculated on test set: 0.91
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The optimal solutions to the wine models
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CSC4.5: Conclusions

• The synthesized MILP models may be non-convex w.r.t. the input 
variables

• The synthesized MILP models are oversize

• CSC4.5 is unable to model interactions between variables

• CSC4.5 is susceptible to the curse of dimensionality
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Evolutionary Strategy-based One-Class 
Constraint Synthesis (ESOCCS) for 1-CSP
• General idea:

• Model the distribution of the feasible states using Gaussian Mixture 
Model and Expectation Maximization

• Sample the tail of that distribution for unlabeled and likely infeasible 
examples

• Evolve a population of constraints using (μ+λ)-Evolutionary Strategy

• Single-population cooperative co-evolution

• Select a minimal subset of constraints from the population to produce an 
MP model

Tomasz P. Pawlak, Synthesis of Mathematical Programming models 
with one-class evolutionary strategies, Swarm and Evolutionary 
Computation, Elsevier, 2018 (in press). IF=3.893, 50p MNiSW
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(μ+λ)-Evolutionary Strategy in a single-
population cooperative co-evolution mode
• Representation of a constraint:

• Vector of weights wi of predefined terms (e.g., variables)
• A constant w0

• Vector of standard deviations σi corresponding to wi

• Vector of rotation angles αij corresponding to the pairs of wi and wj

• Population: a set of μ constraints

• Gaussian initialization 

• Correlated mutation

• Hybrid recombination

50

wi ~ N(0,1)



Constraint selection and fitness assessment
• Let P’ be a constraint pool made of μ parent constraints and λ offspring 

constraints produced by the search operators

• Selection of the minimal subset of P’ that maximize the number of 
correctly classified examples is a generalized set cover problem

• Where
• (a) is the number of feasible examples violating the selected constraints

• (b) is the number of unlabeled examples satisfying the selected constraints

• (c) is the number of constraints

• This problem is solved optimally, thus the synthesized model is minimal

• The selected constraints are removed from P’ and advance to the next 
generation population

• Constraint selection repeats until the next generation population is full 51



(a) Mean angle between the corresponding constraints
(b) Jaccard index of the feasible regions
of the synthesized and the actual MP models
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Modeling Rice Production

• Rice production in India data set [1]
• Heavily preprocessed in this work

• Variables in absolute units recalculated relatively to the farm area

• Ordinal variables transformed into integers

• Six output variables aggregated into two variables

• 1022 examples of rice farms

[1] Q.Feng, W.C.Horrace, Alternative technical efficiency measures: Skew, 
bias and scale, Journal of Applied Econometrics 27 (2) (2012) 253-268. 
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Rice production QP model
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Estimate of the 
total income

Estimate of the 
total cost



The optimal solutions to the rice 
production model(s)
• Three cases of farmer’s budget:

• Q1, Median, Q3 cost in the data set

• Modeled using an extra constraint on the cost estimate Ĉ
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ESOCCS2 – five improvements to ESOCCS

• I1: Estimation of distribution of feasible states using Kernel Density Estimation 
(KDE) instead of Expectation Maximization (EM)
• The assumption that the actual distribution is a Gaussian Mixture may be false

• KDE is non-parametric estimation method

• It difficult to estimate bandwidth matrix for KDE and many approaches exist
• We used Silverman’s rule

• I2: Denser sampling of unlabeled examples
• In ESOCCS the density of a sample of unlabeled examples decreases with dimensionality

• ESOCCS2 increases the sample size to reduce the decrease rate

• I3: Bounding-box initialization
• The initial population is supplemented with bounding-box of the training set

• I4: Reuse of constraints in successively built models
• The constraints are not removed from the pool, but use of some subsets of constraints 

together is forbidden

• I5: Prevention from degenerate empty models
• Degenerated models are explicitly prohibited by new formulation of the generalized set 

cover problem

Tomasz P. Pawlak, Performance Improvements for Evolutionary Strategy-based 
One-Class Constraint Synthesis, GECCO‘18, ACM, 2018. 57



ESOCCS vs ESOCCS2

• In total 23 combinations of I1 – I4 applied to ESOCCS are verified

• The p-values of the Wilcoxon signed rank test for significance of 
differences in Jaccard indexes of the feasible regions for each of I1 –
I4:

• ESOCCS with the combination of I2, I3, I4 is significantly better than 
bare ESOCCS and 16 other setups in LP models and 17 other setups 
in NLP models
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I1 I2 I3 I4

LP 0.001 0.001 0.135 0.001

NLP 0.001 0.001 0.074 0.001

In fact, this is significant 
deterioration



ESOCCS: conclusions

• A fully configurable type of the synthesized model

• Good generalization performance and handling of noise

• Significant computation cost due to solving the set cover problem

• The curse of dimensionality is still an issue

• KDE (I1) failed probably due to inadequate algorithm for calculating 
bandwidth matrix 
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One-Class Constraint Acquisition with 
Local Search (OCCALS) for 1-CSP
• General idea:

• Partition the training set using x-means

• Find an LP model for each partition using local search

• Remove redundant constraints in each LP model independently

• Create a MILP model implementing alternative of the individual LP 
models

• Daniel Sroka, Tomasz P. Pawlak, One-Class Constraint Acquisition 
with Local Search, GECCO '18, ACM, 2018.
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Training set partitioning using x-means

• Make an initial partitioning using k-means with a fixed k
• E.g., k = 2

• Split each partition Pi further into Pi’ and Pi’’ using k-means with k=2

• If BIC(Pi’, Pi’’) > BIC(Pi) then
• Replace Pi with Pi’ and Pi’’ 
• Repeat these steps for Pi’ and Pi’’ 

• BIC is Bayesian Information Criterion under Gaussian Mixture
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Local search of LP constraints

• For each partition cmax constraints are sought independently

• Local search finds one constraint at time

• The initial weights of a constraint are random

• Local search minimizes the number of false negatives

• Step size decreases with true positives
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Feasible region

Removal of redundant constraints

• The same approach like in GENETICS is taken

Violates red
constraint only Violates green 

constraint only

Violates red and 
blue constraints

Violates green and 
blue constraints

Violates green, blue and red constraints

No region contains solutions that violate blue constraint only:
Blue constraint is redundant. 63



A MILP model implementing an 
alternative of LP models

Individual LP Models
A MILP model with 
auxiliary binary variables di

L is a big constant

64

w1 x ≤ a1

w2 x ≤ a2

w3 x ≤ a3

v1 x ≤ b1

v2 x ≤ b2

v3 x ≤ b3

w1 x + Ld1 ≤ a1 + L
w2 x + Ld1 ≤ a2 + L
w3 x + Ld1 ≤ a3 + L

v1 x + Ld2 ≤ b1 + L
v2 x + Ld2 ≤ b2 + L
v3 x + Ld2 ≤ b3 + L

d1 + d2 ≥ 1
d1, d2∈{0, 1}



OCCALS vs GOCCS

• F1 score on test set

• MCC – Matthew’s Correlation Coefficient 
on test set
• 1 – ideal classification

• 0 – random classification

• -1 – anti-ideal classification

• The p-values for Wilcoxon signed-rank 
test for differences
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Visualization of the synthesized models
Cube Simplex Ball

k=1

k=2
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OCCALS: conclusions

• The most successful algorithm so far

• Quick and fast

• Good generalization performance and noise handling

• An improved version is under development
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General conclusions

• Mathematical Programming (MP) is a common formalism for 
optimization methods, well-recognized both in business and 
academia

• Surprisingly, most of the MP models are handcrafted and the 
synthesis of MP models from data is underrepresented in literature

• We formally defined several variants of the synthesis problem, 
including 1-CSP and 2-CSP

• 2-CSP problem is known to be NP-hard

• 1-CSP is more practical due to no need for infeasible examples, but 
it is also more difficult to solve than 2-CSP

• We proposed several heuristic approaches to solve both 1-CSP and 
2-CSP
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Future research directions

• Drop requirement for second-class examples in some of the 
presented algorithms

• Design novel performance measures calculable using feasible 
examples only

• Design more objective experimental protocol for real-world data
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