

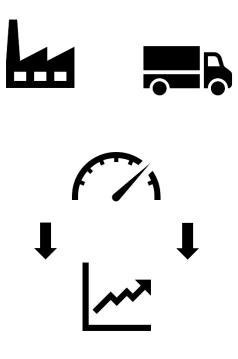
POZNAN UNIVERSITY OF TECHNOLOGY

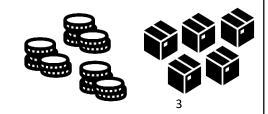
SYNTHESIS OF MATHEMATICAL PROGRAMMING MODELS FROM DATA

Tomasz P. Pawlak, Maciej Buzalski

Institute of Computing Science Poznan University of Technology Poznań, Poland

29.05.2018


Parts of this work were supported by the Foundation for Polish Science and the National Science Centre, Poland, grant no. 2016/23/D/ST6/03735.


Outline

- Motivation
- Model Synthesis Problem
 - Decomposition
 - Types of problems
 - Challenges
- Model Synthesis using
 - Linear Programming
 - Genetic Programming
 - Decision trees
 - Evolutionary Strategy
 - Local Search

Motivation: a use case

- Consider a real-world business process, e.g.,
 - Manufacturing of a product
 - Delivery of goods
- Goal #1: Simulation, e.g.,
 - To estimate operating costs
 - To estimate production volume
- Goal #2: Optimization, e.g.,
 - To minimize operating costs
 - To maximize production volume
- To achieve these goals one needs a mathematical model of the business process

A Mathematical Programming (MP) Model

- Variables
 - Represent the input, output and parameters of the business process
 - Specified with domains: Real, Integer, Binary etc.
- Objective function
 - The goal to achieve
- Constraints
 - Specify relationships between variables, e.g., operating conditions
 - Manual construction is time-consuming:
 - Requires deep insight into the business process
 - Requires transformation to form accepted by a solver, e.g., linear
 - Humans are error-prone and errors in constraints are expensive
- Simulation and optimization achieved using solvers, e.g.,

MODEL SYNTHESIS PROBLEM

General Model Synthesis Problem

• Input:

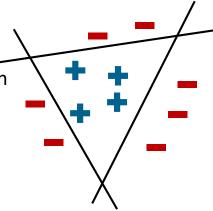
- Examples of states (values of variables)
 - Acquired by e.g., recording operations of the process
- A class of MP model to synthesize
 - E.g., Linear Programming, Quadratic Programming, etc.
- Output:
 - An objective function representing the outcome of the business process
 - A set of constraints comply with the examples

This is a classification problem

This is a regression problem

Problem decomposition

- The syntheses of an objective function and the constraints are largely independent
- The constraints define what is the feasible solution, and the objective function assesses the quality of this solution
- A single set of constraints can made up an MP model with an arbitrary objective function:
 - It does not matter for the constraints whether an objective function calculates a time cost, monetary profit, or waste of a material
- The synthesis of the objective function as a regression against a specific variable of the problem has many existing solutions
- The synthesis of the constraints surprisingly gained only a little attention in the state-of-the-art works


The remaining of this presentation is on constraint synthesis

Two-Class Constraint Synthesis Problem (2-CSP)

- Input:
 - Set X of examples x labeled as
 - Feasible represent the states reached during normal execution
 - Infeasible erroneous, faulty or undesired states
 - A class of constraints to synthesize
 - E.g., linear, quadratic, etc.
- Output:
 - A set C of constraints in the form of

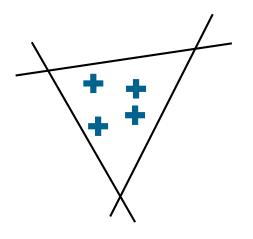
p(x) ≤ a

- Where p(x) is a function of the given class and a is a constant
- Such that
 - The number of feasible examples satisfying all constraints in C is maximized (true positives)
 - The number of infeasible examples violating at least one constraint in C is maximized (true negatives)

2-CSP is NP-hard

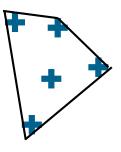
- The problem of determining whether two sets of examples are separable using a fixed number of k ≥ 2 linear constraints is NPcomplete [1].
- It is NP-complete even if k is not fixed but bounded by the square of the number of dimensions n, i.e., $2 \le k \le n^2$ [2].
- In consequence, synthesizing $k \ge 2$ linear constraints, where k is either fixed or bounded by n^2 , is NP-hard.
- The complexity of learning $k \ge 2$ non-linear constraints is an open question.

[1] Nimrod Megiddo, "On the complexity of polyhedral separability", Discrete & Computational Geometry 3, 4 (1988), pp. 325 – 337.


[2] Avrim L. Blum and Ronald L. Rivest, "Training a 3-node neural network is NP-complete", *Neural Networks* 5, 1 (1992), pp. 117 – 127.

One-Class Constraint Synthesis Problem (1-CSP)

- Input:
 - Set X of examples x
 - No labels
 - The examples are assumed to represent feasible states
 - A class of constraints to synthesize
 - E.g., linear, quadratic, etc.
- Output:
 - A set C of constraints in the form of


p(x) ≤ a

- Where p(x) is a function of the given class and a is a constant
- Such that
 - The number of feasible examples satisfying all constraints in C is maximized (true positives)
 - The margin of the constraints to the closest examples is minimized

Properties of 1-CSP

- This is a one-class classification problem
- Time-complexity of 1-CSP for $k \ge 2$ constrains is an open question
- Assuming linear constraints, the convex hull co(X) is the optimal solution, because:
 - All examples from X are included in co(X),
 - The margin is 0 for all constraints, as the examples are the vertexes of co(X)

- The number of facets of a convex hull grows exponentially with dimensionality n, and so the time of calculating co(X)
 - Unfortunately, I have no formal proof for time-complexity w.r.t. n.

Convex hull is not the best solution when generalization is under consideration

- An optimal solution of an LP model made of
 - Convex hull-based constraints
 - Any linear objective function

is an example from the training set X

- Hence:
 - Optimization of a convex hull-based LP model is futile
 - We cannot find a solution that we have not known before
 - Also, it is often more efficient to enumerate the known solutions from X than actually solving an LP model with a large number of constraints
- In general:
 - Too tight constraints limit generalization and may cause an optimal solution to be suboptimal in practice
 - Too loose constraints are detrimental too, as they may allow for solutions that happen inapplicable in practice

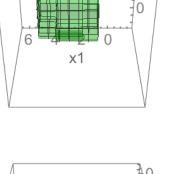
The curse of dimensionality

- Assume that:
 - The optimal solution is a constraint resembling an n-ball centered in \mathbf{y} with radius r and volume $V \sqcup r^n$
 - An algorithm produces a constraint resembling an n-ball centered in **y**, but commits an error in the radius by extending it by infinitely small $\P r > 0$
- Then:
 - The volume of the synthesized n-ball is $V ext{ for } (r + \partial r)^n$
 - It is exponentially with n greater than the volume of the optimal n-ball

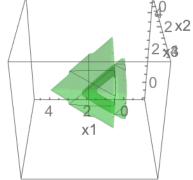
$$\frac{V \Box}{V} \propto \left[1 + \frac{\partial r}{r} \right]^n \quad \text{and} \quad \lim_{n \to \Box} \frac{V \Box}{V} = \Box$$

- The volume of the margin between the n-balls grows exponentially with n
- In high dimensions, an apparently negligible error in a constraint may cause dramatic deterioration of virtually any data-set-backed performance measure for this constraint, as the margin between it and the optimal constraint may include exponential number of examples

Synthetic performance assessment


- Synthetic benchmarks MP models with parameters:
 - n number of variables
 - k number of alternative subsets of constraints
- Training sets
 - 1-CSP: Feasible examples uniformly sampled from feasible region of an MP model
 - 2-CSP: Feasible and infeasible examples uniformly sampled from the Cartesian product of domains of variables
- Test sets
 - Feasible and infeasible examples uniformly sampled from the Cartesian product of domains of variables
- Data-based measures of fidelity
 - E.g., accuracy, F₁-score,...
- Syntactic measures of fidelity
 - E.g., angles between the corresponding constraints in the synthesized and the benchmark MP models

Examples of benchmarks


$$\begin{array}{ll} \forall_{j=1}^{k} \forall_{i=1}^{n} : x_{i} - Lb_{j} &\geq ij - L \\ \forall_{j=1}^{k} \forall_{i=1}^{n} : x_{i} + Lb_{j} &\leq ij + id + L \\ & \sum_{j=1}^{k} b_{j} &\geq 1 \\ \forall_{i=1}^{n} : x_{i} \in [i - ikd, i + 2ikd] \\ \forall_{j=1}^{k} : b_{j} \in \{0, 1\} \end{array}$$

Simplex^{*k*}_{*n*}:

$$\begin{array}{ll} \forall_{j=1}^{k} \forall_{i=1}^{n} \forall_{l=i+1}^{n} : x_{i} \cot \frac{\pi}{12} - x_{l} \tan \frac{\pi}{12} - Lb_{j} & \geq 2j - 2 - L \\ \forall_{j=1}^{k} \forall_{i=1}^{n} \forall_{l=i+1}^{n} : x_{l} \cot \frac{\pi}{12} - x_{i} \tan \frac{\pi}{12} - Lb_{j} & \geq 2j - 2 - L \\ \forall_{j=1}^{k} : \sum_{i=1}^{n} x_{i} + Lb_{j} & \leq jd + L \\ & \sum_{j=1}^{k} b_{j} & \geq 1 \\ & \forall_{i=1}^{n} : x_{i} \in & [-1, 2k + d] \\ & \forall_{j=1}^{k} : b_{j} \in & \{0, 1\} \end{array}$$

5x2

 Ball_n^k :

d is a parameter = 2.7

$$\begin{aligned} \forall_{j=1}^{k} \sum_{i=1}^{n} \left(x_{i} - i - \frac{2\sqrt{6}(j-1)d}{i\pi} \right)^{2} + Lb_{j} &\leq d^{2} + L \\ \sum_{j=1}^{k} b_{j} &\geq 1 \\ \forall_{i=1}^{n} : x_{i} \in \left[i - 2d, i + \frac{2\sqrt{6}(k-1)d}{\pi} + 2d \right] \\ \forall_{j=1}^{k} : b_{j} \in \{0, 1\} \end{aligned}$$
where:
L is a big constant

0 10 x1 0

Performance assessment on real-world problems

- Let there be a data set of states achieved by a business process
- General workflow consists of four steps:
 - 1. Synthesize a set of constraints from the data set
 - 2. Attach an objective function
 - A regression model calculated using the data set, or
 - A known objective function
 - 3. Optimize the MP model
 - 4. Validate the optimal solution with the data set
 - E.g., assess similarity to the one or more most similar examples

Challenges for assessing an MP model for a real-world business process

- 1-CSP:
 - The data set consists of feasible examples only
 - False positives and True negatives are 0 for any MP model
 - So, most of the performance measures typical to Machine Learning are biased or cannot be calculated
- 1-CSP & 2-CSP:
 - The optimal solution of an MP model usually lies on a constraint
 - In particular, this holds for all Linear Programming models
 - In statistical sense, the optimal solution is an outlier it lies on the boundary of a distribution of feasible solutions
 - From the optimization point of view, there is no reason to reward the MP model for the interior of its feasible region; only the boundary matters
 - Hence, assessment of an MP model using a test set is futile:
 - The test set-based measures (usually) reward the MP model equally for each example
 - The test set is a sample of the space that may be far from the boundary of the feasible region
- 2-CSP:
 - The data set is often imbalanced, as infeasible states like errors and faults are avoided
- The actual MP model is unknown
 - We are unable to calculate syntactic measures of fidelity

ALGORITHMS

Solving 2-CSP using Mixed-Integer Linear Programming (MILP)

- The general idea is to encode the 2-CSP using a MILP problem and solving optimally
- Ockham's razor:
 - The objective is to find the minimal set of constraints that separate the sets of feasible and infeasible examples
 - Misclassification is disallowed
- The algorithm synthesizes LP models and user-defined classes of NLP models

Tomasz P. Pawlak, Krzysztof Krawiec, Automatic synthesis of constraints from examples using mixed integer linear programming, European Journal of Operational Research 261 (2017) 1141-1157. IF=3.297, 40p MNiSW

Encoding 2-CSP using MILP

number of terms used min $\sum_{ii} C_i w_{ii}^b + \sum_i C_0 c_i^b$ 1 $-10^{-3} \sum_{i} \left(\sum_{j} w_{ij}^{f} + c_{i}^{f} \right)$ 2 number of w_{ii} and c_i set to 1 $+10^{-6} \sum_{i} (\sum_{j} (w_{ij}^{l} + w_{ij}^{u}) + c_{i}^{l} + c_{i}^{u})$ 3 sum of abs. dev. of w_{ii} and c_i from 1 4 subject to $\forall h_k^+, i: \sum w_{ij} t_j(h_k^+) \leq c_i$ ϕ_i is met for all h^+ 5 $\forall h_k^{\hat{n}}, i: \sum_{j} w_{ij} t_j(h_k^{\hat{n}}) \ge M s_{ki} - M + c_i + \epsilon \phi_i \text{ is not met for } h_k^{\hat{n}} \text{ if } s_{ki} = 1$ 6 7 $\forall h_{\nu}^{-}: \sum_{i} s_{ki} \geq 1$ exists ϕ_i not met for all $h^ \forall i, j : w_{ij} \leq w_{max} w_{ij}^b$ $w_{ii} \neq 0 \Rightarrow w_{ii}^b = 1$ 8 $\forall i, j : w_{ij} \geq -w_{max} w_{ij}^b$ 9 10 $\forall i, j: w_{ij} = w_{ij}^u - w_{ij}^l + 1$ $w_{ii}^{u} + w_{ii}^{l}$ is abs. dev. of w_{ij} from 1 $w_{ij} = 1 \Rightarrow w_{ij}^f = 1$ $\forall i, j: w_{ij} \leq w_{max} - (w_{max} - 1)w_{ij}^f$ 11 12 $\forall i, j: w_{ij} \geq -w_{max} + (w_{max} + 1)w_{ij}^J$ 13 $\forall i: c_i \leq c_{max}c_i^b$ $c_i \neq 0 \Rightarrow c_i^b = 1$ 14 $\forall i: c_i \geq -c_{max}c_i^b$ $\forall i: c_i = c_i^u - c_i^l + 1$ $\forall i: c_i \leq c_{max} - (c_{max} - 1)c_i^f$ $c_i^u + c_i^l \text{ is abs. dev. of } c_i \text{ from 1}$ $c_i = 1 \Rightarrow c_i^f = 1$ 15 $\forall i: c_i = c_i^u - c_i^l + 1$ 16 $\forall i: c_i \geq -c_{max} + (c_{max} + 1)c_i^f$ 17 18 $\forall i: \sum_{i} w_{ii}^b \geq c_i^b$ use at least one w_{ij} if $c_i \neq 0$ $19 \sum_{ij} w_{ij}^{f} + \sum_{i} c_{\geq}^{f} 1$ exists w_{ii} or c_i fixed to 1 $\forall w_{ij} \in [-w_{max}, w_{max}]$ weights of terms 20 21 $\forall w_{ij}^b, w_{ij}^f \in \{0, 1\}$ indicators that w_{ij} is used and set to 1, resp. 22 $\forall w_{ij}^l, w_{ij}^u \in [0, w_{max}]$ auxiliary variables to calculate abs. deviation $\forall c_i \in [-c_{max}, c_{max}]$ 23 free terms 24 $\forall c_i^b, c_i^f \in \{0, 1\}$ indicators that c_i is used and set to 1, resp. 25 $\forall c_i^l, c_i^u \in [0, c_{max}]$ auxiliary variables to calculate abs. deviation

indicator that ϕ_i is not met for h_{μ}^-

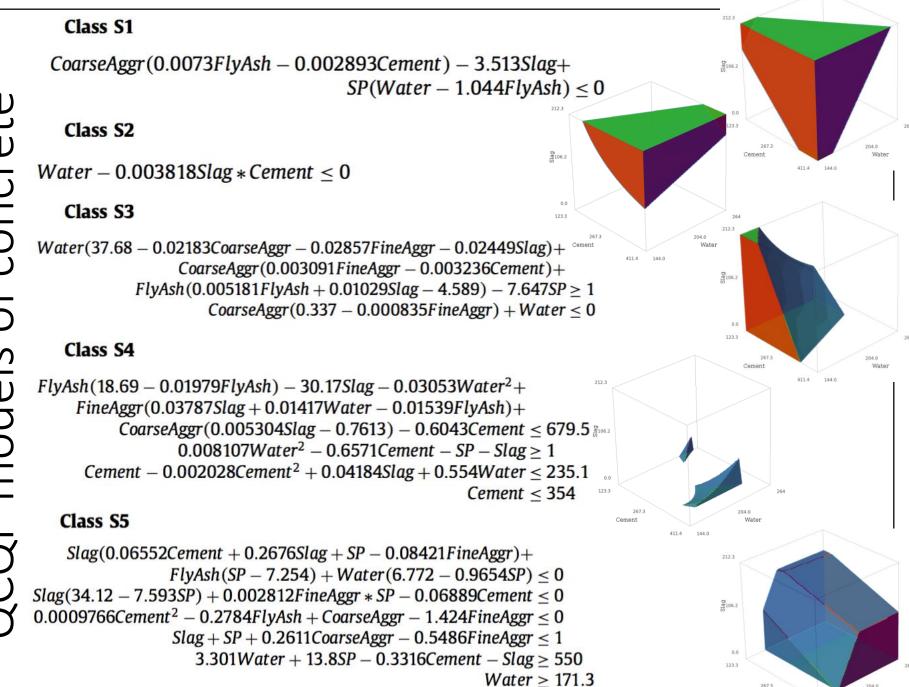
 $\forall s_{ki} \in \{0, 1\}$

26

Jaccard indexes of the feasible regions of the synthesized and the actual MP models

Balln	Simplexn	Cuben											
L term set													
z n 3 4 5 6 7	z n 3 4 5 6 7	z n 3 4 5 6 7											
10 0.61 0.36 0.17 0.06 0.02	10 0.05 0.01 0.00 0.00 0.00	10 0.09 0.02 0.01 0.00 0.00											
20 0.72 0.49 0.23 0.09 0.03	20 0.07 0.01 0.00 0.00 0.00	20 0.13 0.04 0.01 0.00 0.00											
30 0.78 0.57 0.30 0.11 0.03	30 0.09 0.01 0.00 0.00 0.00	30 0.19 0.06 0.02 0.01 0.00											
40 0.82 0.61 0.37 0.14 0.04	40 0.11 0.01 0.00 0.00 0.00	40 0.23 0.07 0.03 0.01 0.00											
50 0.83 0.64 0.43 0.16 0.05	50 0.12 0.01 0.00 0.00 0.00	50 0.29 0.09 0.03 0.01 0.00											
100 0.86 0.73 0.52 0.27 0.09	100 0.27 0.02 0.00 0.00 0.00	100 0.52 0.24 0.09 0.03 0.01											
200 0.90 0.78 0.60 0.33 0.15	200 0.57 0.05 0.00 0.00 0.00	200 0.82 0.51 0.26 0.09 0.03											
300 0.92 0.82 0.62 0.37 0.17	300 0.64 0.11 0.01 0.00 0.00	300 0.95 0.72 0.45 0.19 0.06											
400 0.93 0.84 0.67 0.39 0.21	400 0.77 0.16 0.01 0.00 0.00	400 0.97 0.87 0.59 0.25 0.10											
500 0.93 0.84 0.69 0.43 0.22	500 0.76 0.16 0.01 0.00 0.00	500 0.97 0.93 0.72 0.39 0.12											
	LQ term set												
z n 3 4 5 6 7		$z \setminus n \ 3 \ 4 \ 5 \ 6 \ 7$											
10 0.61 0.37 0.17 0.06 0.02 20 0.72 0.49 0.23 0.09 0.03	and the second	the subscription of the su											
30 0.78 0.57 0.30 0.11 0.03	30 0.09 0.01 0.00 0.00 0.00	30 0.19 0.06 0.02 0.01 0.00											
40 0.81 0.61 0.37 0.14 0.04	40 0.10 0.01 0.00 0.00 0.00	40 0.26 0.07 0.03 0.01 0.00											
50 0.83 0.64 0.44 0.15 0.05	50 0.12 0.01 0.00 0.00 0.00	50 0.34 0.09 0.03 0.01 0.00											
100 0.86 0.73 0.53 0.26 0.09	$100 \ 0.27 \ 0.03 \ 0.00 \ 0.00 \ 0.00$	100 0.62 0.24 0.07 0.02 0.01											
200 0.92 0.80 0.60 0.33 0.15	200 0.55 0.06 0.00 0.00 0.00	200 0.75 0.51 0.17 0.10 0.02											
300 0.94 0.84 0.68 0.36 0.17	300 0.59 0.09 0.00 0.00 0.00	300 0.83 0.51 0.23 0.15 0.06											
400 0.96 0.88 0.70 0.42 0.21	400 0.74 0.14 0.01 0.00 0.00	400 0.87 0.62 0.31 0.17 0.08											
500 0.97 0.90 0.73 0.46 0.21	500 0.77 0.22 0.01 0.00 0.00	500 0.89 0.62 0.38 0.17 0.08											

Mean angles between the corresponding constraints in the synthesized and the actual MP models

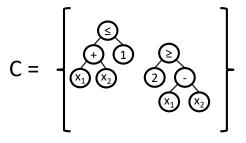

Balln	Simplexn	Cuben						
	$L \ term \ set$							
z n 3 4 5 6 7	z n 3 4 5 6 7	z n 3 4 5 6 7						
10 1.07 1.05 1.04 1.13 1.10	10 0.79 1.03 1.16 1.26 1.32	10 0.78 0.91 1.03 1.12 1.20						
20 0.99 1.05 1.02 1.08 1.04	20 0.69 0.98 1.10 1.17 1.22	20 0.62 0.85 0.94 1.04 1.10						
30 0.98 0.98 1.07 1.09 1.05	30 0.66 0.86 1.04 1.13 1.18	30 0.35 0.75 0.81 0.99 1.03						
40 0.96 0.99 1.03 1.05 1.08	40 0.62 0.81 0.97 1.09 1.17	40 0.28 0.56 0.73 0.83 0.88						
50 0.97 0.99 1.02 1.05 1.06	50 0.57 0.76 0.93 1.07 1.16	50 0.30 0.47 0.60 0.76 0.87						
100 0.99 1.00 0.99 1.05 1.08	100 0.35 0.57 0.80 0.91 1.06	100 0.13 0.18 0.31 0.47 0.58						
200 1.00 0.99 1.02 1.04 1.06	200 0.17 0.45 0.61 0.77 0.93	200 0.00 0.03 0.13 0.23 0.36						
300 1.01 1.03 1.05 1.05 1.06	300 0.13 0.36 0.65 0.78 0.96	300 0.00 0.01 0.05 0.15 0.23						
400 1.03 1.03 1.06 1.04 1.02	400 0.09 0.36 0.53 0.80 0.90	400 0.00 0.00 0.03 0.11 0.14						
500 1.06 1.05 1.08 1.06 1.03	500 0.09 0.25 0.53 0.85 0.86	500 0.01 0.02 0.02 0.04 0.13						
500 1.00 1.00 1.00 1.00 1.00	LQ term set	OUD WAY DAVE DIDE DIDE						
z n 3 4 5 6 7	z n 3 4 5 6 7	z n 3 4 5 6 7						
$10 \ 1.07 \ 1.06 \ 1.04 \ 1.11 \ 1.10$	10 0.79 1.03 1.17 1.26 1.33	10 0.80 0.92 1.03 1.12 1.21						
20 0.99 1.05 1.02 1.08 1.06	20 0.70 0.97 1.10 1.17 1.22	20 0.64 0.86 0.93 1.04 1.10						
30 0.97 0.98 1.07 1.09 1.04	30 0.66 0.86 1.04 1.13 1.19	30 0.36 0.72 0.82 0.99 1.04						
40 0.97 1.00 1.04 1.05 1.09	40 0.63 0.81 0.97 1.08 1.18	40 0.28 0.59 0.70 0.87 0.98						
50 1.00 1.01 1.03 1.07 1.05	50 0.56 0.79 0.93 1.00 1.15	50 0.27 0.48 0.77 0.85 0.93						
100 1.07 1.05 1.02 1.04 1.04	100 0.38 0.60 0.81 0.95 1.08	100 0.10 0.26 0.57 0.69 0.87						
200 1.10 1.13 1.07 1.07 1.05	200 0.21 0.52 0.83 0.93 1.05	200 0.16 0.24 0.42 0.43 0.64						
300 1.13 1.15 1.18 1.09 1.08	300 0.29 0.47 0.80 0.97 0.97	300 0.13 0.30 0.51 0.42 0.49						
400 1.19 1.16 1.19 1.12 1.03	400 0.16 0.43 0.72 0.94 0.94	400 0.13 0.34 0.46 0.49 0.50						
500 1.03 1.18 1.18 1.20 1.10	500 0.15 0.42 0.78 0.95 1.03	500 0.10 0.33 0.41 0.45 0.47						

Modeling of concrete

• Based on the slump test data-set [1]

[1] Yeh, I.-C. (2007). Modeling slump flow of concrete using secondorder regressions and artificial neural networks. *Cement and Concrete Composites, 29*(6), 474–480.

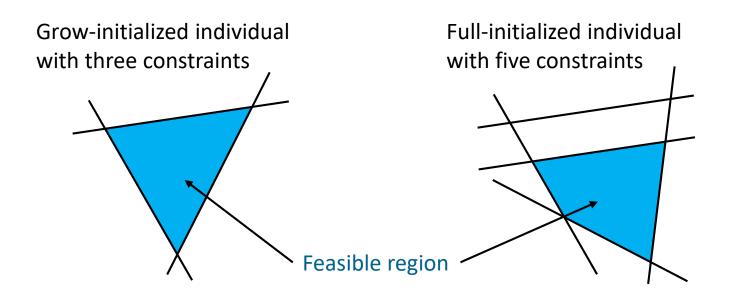
411.4 144.0

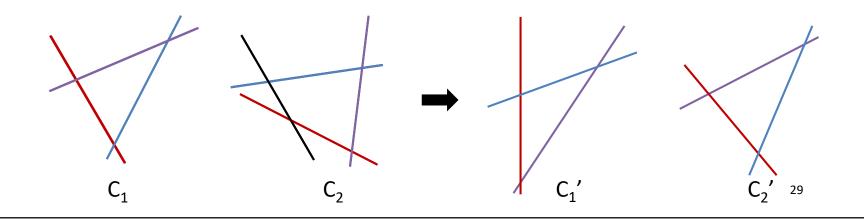

Conclusions

- Solving a MILP problem is NP-hard and so we had to terminate solver prematurely for large problem instances
- The algorithm overfits and is susceptible to noise
 - The MILP problem is aimed at minimizing model complexity while guarantying separation of the feasible and the infeasible examples
- The feasible region is often overestimated
 - The algorithm strives to use as simple constraints as possible and in the effect the feasible region features many outlying vertexes
- The training set is typically imbalanced with higher share of the feasible examples, while the algorithm requires higher share of the infeasible examples to avoid overestimating the feasible region

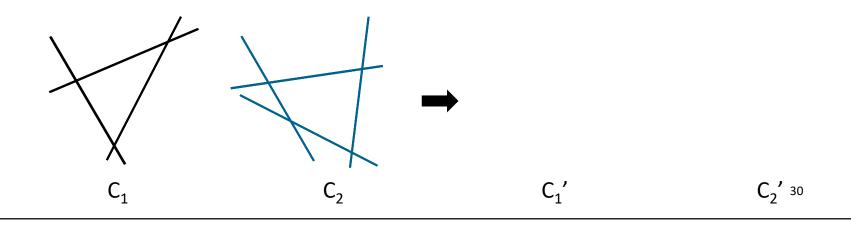
GENETICS: Genetic Programming Constraint Synthesis for 2-CSP

- Representation
 - An individual C is a set of constraints
 - A constraint is an Abstract Syntax Tree (AST)
- Strongly-typed Genetic Programming
 - Tree root is one of \leq , =, \geq
 - ≤, =, ≥ accept any other instructions as arguments
- Instruction sets
 - For Linear Programming models:
 - +, -, ×, x_i, 1, ERC where × is multiplication that accepts +, -, 1, ERC as its left-hand argument
 - For polynomial models:
 - +, -, ×, *, x², x_i, 1, ERC where * accepts all instructions as arguments

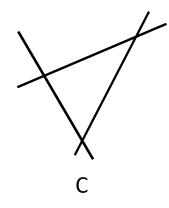

Tomasz P. Pawlak, Krzysztof Krawiec, Synthesis of Mathematical Programming Constraints with Genetic Programming, EuroGP 2017, Lecture Notes in Computer Science 10196:178-193, Springer, 2017.


GENETICS: Fitness function

- Assessment of C on example x is:
 - For a feasible example **x**:
 - The number of constraints in C violated on **x**
 - For an infeasible example **x**:
 - 1 if all constraints in C are met for x, 0 otherwise
- Parsimony pressure tests
 - Minimize the number of constraints in C
 - Minimize the total number of nodes in constraints in C
- Assessment of C is a vector of assessments on examples and parsimony pressure tests
 - Lexicase selection runs on these vectors
- The best-of-run individual C minimizes a sum of vector elements

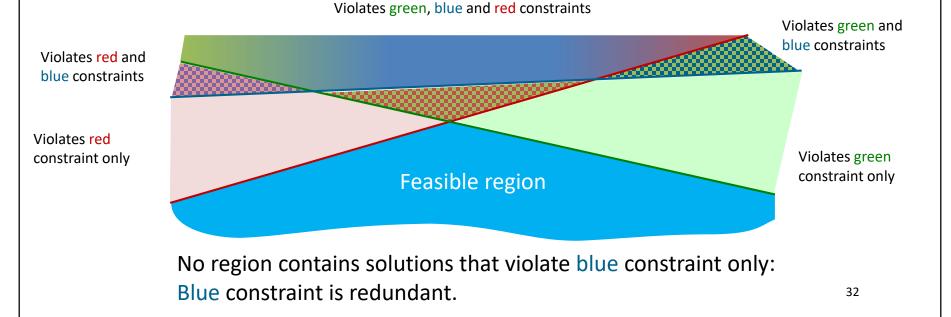

- Ramped Half-and-Half (RHH) initialization
 - Grow and Full build individual constraints
 - Total number of constraints initialized in C is parameterized:
 - Grow draws it from the parameterized range
 - Full uses the maximum in that range

- Constraint Tree Crossover (CTX)
 - Draws one constraint from each parent C₁ and C₂
 - Runs Tree Swapping Crossover and inserts crossed-over constraints into corresponding offspring $C_1^{'}$ and $C_2^{'}$
- Constraint Tree Mutation (CTM)
 - Initializes a random individual C_r using RHH
 - Runs CTX for the given parent C and C_r and returns one of resulting offspring



- Constraint Swapping Crossover (CSX)
 - Given two parents C₁ and C₂, their constraints are randomly assigned to two offspring C₁['] and C₂[']
- Constraint Swapping Mutation (CSM)
 - Initializes a random individual C_r using RHH
 - Runs CSX for the given parent C and C_r and returns one of resulting offspring

• Gaussian Constant Mutation (GCM)


- Draws a constant c from each constraint in the given parent C
- Replaces c with c'~N(c, 1)

C'

GENETICS: Post-processing

- Remove redundant constraints from the best-or-run individual:
 - A constraint is redundant if for all solutions it is either satisfied or another violated constraint exists

Mean Jaccard index of the feasible regions of the synthesized and the actual MP models

]	$\mathrm{Ball}n$		$\mathrm{Cube}n$									
	Linear models													
$z \setminus n$	3	4	5	6	n:	3	4		5	6	7			
20	0.75 ± 0.02 0	$.54 \pm 0.05$ (0.31 ± 0.04	$0.10 \ \pm 0.01$	0.05 ± 0.01	0.10	± 0.01	$0.03 \pm 0.$	00 0.01	± 0.00	0.00 ± 0.00	0.00 ± 0.00		
30	0.80 ± 0.03 0	$.59 \pm 0.04$ (0.40 ± 0.05	$0.14 \ \pm 0.03$	0.05 ± 0.01	0.15	± 0.02	$0.04 \pm 0.$	00 0.01	± 0.00 (0.00 ± 0.00	0.00 ± 0.00		
40	0.82 ± 0.02 0	$.64 \pm 0.03$ (0.44 ± 0.04	$0.22 \hspace{0.1 cm} \pm 0.04 \hspace{0.1 cm}$	0.06 ± 0.01	0.17	± 0.02	$0.05 \pm 0.$	01 0.02	± 0.00 (0.00 ± 0.00	0.00 ± 0.00		
50	0.83 ± 0.02 0	$.64 \pm 0.03$ (0.46 ± 0.04	$0.24{\scriptstyle~\pm 0.04}$	0.07 ± 0.01	0.19	± 0.03	$0.06 \pm 0.$	01 0.02	± 0.00 (0.01 ± 0.00	0.00 ± 0.00		
100	0.87 ± 0.01 0	$.73 \pm 0.02$ (0.52 ± 0.02	$0.27 \ \pm 0.03$	0.13 ± 0.02	0.41	± 0.05	$0.13 \pm 0.$	02 0.04	± 0.00 (0.01 ± 0.00	0.00 ± 0.00		
200	$0.92 \pm 0.01 0$	$.80 \pm 0.02$ (0.62 ± 0.02	$0.35 \ \pm 0.03$	0.17 ± 0.02	0.65	± 0.07	$0.24 \pm 0.$	03 0.08	± 0.01 (0.02 ± 0.00	0.01 ± 0.00		
300	$0.93 \pm 0.00 0$	$.82 \pm 0.01$ (0.66 ± 0.02	$0.39{\scriptstyle~\pm 0.03}$	0.20 ± 0.01	0.74	± 0.05	$0.31 \pm 0.$	03 0.11	± 0.02 (0.04 ± 0.01	0.01 ± 0.00		
400	$0.94 \pm 0.00 0$	$.85 \pm 0.01$ (0.67 ± 0.02	$0.43{\scriptstyle~\pm 0.02}$	0.21 ± 0.02	0.77	± 0.03	$0.38 \pm 0.$	05 0.15	± 0.02 (0.04 ± 0.01	0.01 ± 0.00		
500	$0.94 \pm 0.00 0$	$.86 \pm 0.01$ (0.69 ± 0.01	0.45 ± 0.02	0.24 ± 0.02	0.81	± 0.03	$0.48 \pm 0.$	05 0.18	± 0.02 (0.05 ± 0.01	0.02 ± 0.00		
1000	$0.96 \pm 0.00 0$	$.89 \pm 0.01$ (0.76 ± 0.01	0.53 ± 0.02	0.29 ± 0.02	0.89	± 0.02	0.59 ± 0.5	03 0.32	+0.04	0.09 ± 0.01	0.03 ± 0.01		
Polynomial models														
								0.00 ±0.		T 0.04	J.00 <u>1</u> 0.01	0.00 10.01		
$z \setminus n$	3	4	5	Р 6	Polynomia 7	l mode n:		4		5	6	7		
		4	5	Р 6	Polynomia 7	l mode n:	$\frac{ls}{3}$	4		5	6			
$z \setminus n$	3	4 .50 ±0.05 ($\frac{5}{0.30 \pm 0.04}$	6 0.11 ±0.02	Polynomia 7 0.04 ±0.01	l mode n: 0.07	$\frac{ls}{3}$	$\frac{4}{0.02 \pm 0.}$	00 0.01	5 ±0.00 ($\frac{6}{0.00 \pm 0.00}$	7		
$\frac{z\backslash n}{20}$	$\begin{array}{c} 3\\ 0.73 \pm 0.03 \end{array} 0$	4 .50 ±0.05 (.59 ±0.05 ($5 \\ 0.30 \pm 0.04 \\ 0.36 \pm 0.04$	$\begin{array}{c} & & \\ & 6 \\ 0.11 \pm 0.02 \\ 0.15 \pm 0.03 \end{array}$	$\begin{array}{c} Polynomia \\ 7 \\ 0.04 \pm 0.01 \\ 0.05 \pm 0.01 \end{array}$	l mode n: 0.07 0.10	$ls \\ 3 \\ \pm 0.01 \\ \pm 0.02$	$ \begin{array}{c c} 4 \\ 0.02 \pm 0. \\ 0.03 \pm 0. \end{array} $	00 0.01 00 0.01	5 ±0.00 (±0.00 ($\begin{array}{c} 6 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$	$7 \\ 0.00 \pm 0.00$		
$\frac{z\backslash n}{20}$ 30	$\begin{array}{c} 3 \\ 0.73 \pm 0.03 \\ 0.78 \pm 0.03 \end{array} 0$	4 .50 ±0.05 (.59 ±0.05 (.66 ±0.03 ($5 \\ 0.30 \pm 0.04 \\ 0.36 \pm 0.04 \\ 0.41 \pm 0.04$	$\begin{array}{c} & & \\ & 6 \\ 0.11 \pm 0.02 \\ 0.15 \pm 0.03 \\ 0.22 \pm 0.04 \end{array}$	$\begin{array}{c} Polynomia \\ \hline 7 \\ 0.04 \pm 0.01 \\ 0.05 \pm 0.01 \\ 0.06 \pm 0.01 \end{array}$	l mode n: 0.07 0.10 0.12	$ls \\ 3 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02$	$\begin{array}{c} 4 \\ 0.02 \pm 0. \\ 0.03 \pm 0. \\ 0.03 \pm 0. \end{array}$	00 0.01 00 0.01 01 0.01	$5 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ ($	$\begin{array}{c} 6 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$	$7 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00$		
	$\begin{array}{c} 3 \\ 0.73 \pm 0.03 \\ 0.78 \pm 0.03 \\ 0.79 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 4 \\ .50 \pm 0.05 \\ .59 \pm 0.05 \\ .66 \pm 0.03 \\ .64 \pm 0.05 \end{array}$	$5 \\ 0.30 \pm 0.04 \\ 0.36 \pm 0.04 \\ 0.41 \pm 0.04 \\ 0.47 \pm 0.04$	$\begin{array}{c} & & & \\ & & 6 \\ 0.11 \pm 0.02 \\ 0.15 \pm 0.03 \\ 0.22 \pm 0.04 \\ 0.22 \pm 0.04 \end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \hline \\ 0.04 \\ \pm 0.01 \\ 0.05 \\ \pm 0.01 \\ 0.06 \\ \pm 0.01 \\ 0.09 \\ \pm 0.02 \end{array}$	$\begin{array}{c} l \ mode \\ n: \\ 0.07 \\ 0.10 \\ 0.12 \\ 0.14 \end{array}$	$ ls \\ 3 \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.03 $	$\begin{array}{c} 4 \\ 0.02 \\ \pm 0. \\ 0.03 \\ \pm 0. \\ 0.03 \\ \pm 0. \\ 0.04 \\ \pm 0. \end{array}$	000 0.01 000 0.01 01 0.01 01 0.02	$5 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ \pm 0.00 \\ 0 \\ \pm 0.00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 6\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00 \end{array} $	$7 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00$		
	$\begin{array}{c} 3 \\ 0.73 \pm 0.03 & 0 \\ 0.78 \pm 0.03 & 0 \\ 0.79 \pm 0.03 & 0 \\ 0.79 \pm 0.05 & 0 \end{array}$	$\begin{array}{c} 4\\ .50 \pm 0.05 \\ .59 \pm 0.05 \\ .66 \pm 0.03 \\ .64 \pm 0.05 \\ .72 \pm 0.04 \end{array}$	$5 \\ 0.30 \pm 0.04 \\ 0.36 \pm 0.04 \\ 0.41 \pm 0.04 \\ 0.47 \pm 0.04 \\ 0.50 \pm 0.03 \\ 0.30 \pm 0.03 \\ 0.50 \pm 0.0$	$\begin{array}{c} & & \\ & 6 \\ 0.11 \pm 0.02 \\ 0.15 \pm 0.03 \\ 0.22 \pm 0.04 \\ 0.22 \pm 0.04 \\ 0.29 \pm 0.03 \end{array}$	$\begin{array}{c} Polynomia\\ \hline 7\\ 0.04 \pm 0.01\\ 0.05 \pm 0.01\\ 0.06 \pm 0.01\\ 0.09 \pm 0.02\\ 0.12 \pm 0.02 \end{array}$	l mode n: 0.07 0.10 0.12 0.14 0.31		$\begin{array}{c} 4 \\ 0.02 \\ \pm 0. \\ 0.03 \\ \pm 0. \\ 0.03 \\ \pm 0. \\ 0.04 \\ \pm 0. \\ 0.09 \\ \pm 0. \end{array}$	00 0.01 00 0.01 01 0.01 01 0.02 02 0.03	$5 \\ \pm 0.00 \\ \end{bmatrix}$	$\begin{array}{c} 6 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.01 \pm 0.00 \end{array}$	$\begin{array}{c} 7 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$		
	$\begin{array}{c} 3\\ 0.73 \pm 0.03 & 0\\ 0.78 \pm 0.03 & 0\\ 0.79 \pm 0.03 & 0\\ 0.79 \pm 0.05 & 0\\ 0.86 \pm 0.03 & 0\end{array}$	$\begin{array}{c} 4\\ .50 \pm 0.05 \\ .59 \pm 0.05 \\ .66 \pm 0.03 \\ .64 \pm 0.05 \\ .72 \pm 0.04 \\ .77 \pm 0.04 \end{array}$	$5 \\ 0.30 \pm 0.04 \\ 0.36 \pm 0.04 \\ 0.41 \pm 0.04 \\ 0.47 \pm 0.04 \\ 0.50 \pm 0.03 \\ 0.59 \pm 0.02 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.22 \\ 0.2$	$\begin{array}{c} & & \\ & 6 \\ \hline 0.11 \pm 0.02 \\ 0.15 \pm 0.03 \\ 0.22 \pm 0.04 \\ 0.22 \pm 0.04 \\ 0.29 \pm 0.03 \\ 0.35 \pm 0.04 \end{array}$	$\begin{array}{c} \hline Polynomia \\ \hline 7 \\ \hline 0.04 \ \pm 0.01 \\ 0.05 \ \pm 0.01 \\ 0.06 \ \pm 0.01 \\ 0.09 \ \pm 0.02 \\ 0.12 \ \pm 0.02 \\ 0.18 \ \pm 0.03 \end{array}$	$\begin{array}{c} l \ mode \\ n: \\ 0.07 \\ 0.10 \\ 0.12 \\ 0.14 \\ 0.31 \\ 0.49 \end{array}$	ls 3 ±0.01 ±0.02 ±0.03 ±0.06 ±0.08	$\begin{array}{c} 4\\ 0.02 \\ \pm 0.\\ 0.03 \\ \pm 0.\\ 0.03 \\ \pm 0.\\ 0.04 \\ \pm 0.\\ 0.09 \\ \pm 0.\\ 0.17 \\ \pm 0. \end{array}$	00 0.01 00 0.01 01 0.01 01 0.02 02 0.03 03 0.06	5 ± 0.00 (± 0.01 ($\begin{array}{c} 6\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.01 \pm 0.00\\ 0.02 \pm 0.00 \end{array}$	$\begin{array}{c} 7 \\ 0.00 \pm 0.00 \end{array}$		
$ \begin{array}{r} z \setminus n \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \\ 200 \\ \end{array} $	$\begin{array}{c} 3 \\ \hline 0.73 \pm 0.03 & 0 \\ 0.78 \pm 0.03 & 0 \\ 0.79 \pm 0.03 & 0 \\ 0.79 \pm 0.05 & 0 \\ 0.86 \pm 0.03 & 0 \\ 0.80 \pm 0.09 & 0 \end{array}$	$\begin{array}{c} 4 \\ .50 \pm 0.05 \\ .59 \pm 0.05 \\ .66 \pm 0.03 \\ .64 \pm 0.05 \\ .72 \pm 0.04 \\ .77 \pm 0.04 \\ .74 \pm 0.07 \end{array}$	$5 \\ 0.30 \pm 0.04 \\ 0.36 \pm 0.04 \\ 0.41 \pm 0.04 \\ 0.47 \pm 0.04 \\ 0.50 \pm 0.03 \\ 0.59 \pm 0.02 \\ 0.60 \pm 0.06 \\ 0.60 \\ 0.6$	$\begin{array}{c} & & \\ & & 6 \\ \hline 0.11 \ \pm 0.02 \\ 0.15 \ \pm 0.03 \\ 0.22 \ \pm 0.04 \\ 0.22 \ \pm 0.04 \\ 0.29 \ \pm 0.03 \\ 0.35 \ \pm 0.04 \\ 0.38 \ \pm 0.03 \end{array}$	$\begin{array}{c} \hline Polynomia \\ \hline 7 \\ 0.04 \pm 0.01 \\ 0.05 \pm 0.01 \\ 0.06 \pm 0.01 \\ 0.09 \pm 0.02 \\ 0.12 \pm 0.02 \\ 0.18 \pm 0.03 \\ 0.20 \pm 0.02 \end{array}$	l mode n: 0.07 0.10 0.12 0.14 0.31 0.49 0.60	ls 3 ±0.01 ±0.02 ±0.03 ±0.06 ±0.08 ±0.06	$\begin{array}{c} 4\\ 0.02 \\ \pm 0.\\ 0.03 \\ \pm 0.\\ 0.03 \\ \pm 0.\\ 0.04 \\ \pm 0.\\ 0.09 \\ \pm 0.\\ 0.17 \\ \pm 0.\\ 0.21 \\ \pm 0. \end{array}$	00 0.01 00 0.01 01 0.01 01 0.02 02 0.03 03 0.06 03 0.08	5 ± 0.00 (± 0.00 (± 0.00 (± 0.00 (± 0.00 (± 0.01 (± 0.01 ($\begin{array}{c} 6\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.01 \pm 0.00\\ 0.02 \pm 0.00\\ 0.03 \pm 0.00 \end{array}$	$\begin{array}{c} 7 \\ 0.00 \pm 0.00 \\ 0.01 \pm 0.00 \end{array}$		
$ \begin{array}{r} z \setminus n \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \\ 200 \\ 300 \end{array} $	$\begin{array}{c} 3 \\ 0.73 \pm 0.03 & 0 \\ 0.78 \pm 0.03 & 0 \\ 0.79 \pm 0.03 & 0 \\ 0.79 \pm 0.05 & 0 \\ 0.86 \pm 0.03 & 0 \\ 0.80 \pm 0.09 & 0 \\ 0.87 \pm 0.05 & 0 \end{array}$	$\begin{array}{c} 4\\ .50 \pm 0.05 \\ .59 \pm 0.05 \\ .66 \pm 0.03 \\ .64 \pm 0.05 \\ .72 \pm 0.04 \\ .77 \pm 0.04 \\ .74 \pm 0.07 \\ .83 \pm 0.03 \end{array}$	$5 \\ 0.30 \pm 0.04 \\ 0.36 \pm 0.04 \\ 0.41 \pm 0.04 \\ 0.47 \pm 0.04 \\ 0.50 \pm 0.03 \\ 0.59 \pm 0.02 \\ 0.60 \pm 0.06 \\ 0.65 \pm 0.03 \\ 0.0$	$\begin{array}{c} & & \\ & 6 \\ 0.11 \pm 0.02 \\ 0.15 \pm 0.03 \\ 0.22 \pm 0.04 \\ 0.22 \pm 0.04 \\ 0.29 \pm 0.03 \\ 0.35 \pm 0.04 \\ 0.38 \pm 0.03 \\ 0.43 \pm 0.03 \end{array}$	$\begin{array}{c} \hline Polynomia \\ \hline 7 \\ \hline 0.04 \pm 0.01 \\ 0.05 \pm 0.01 \\ 0.06 \pm 0.01 \\ 0.09 \pm 0.02 \\ 0.12 \pm 0.02 \\ 0.18 \pm 0.03 \\ 0.20 \pm 0.02 \\ 0.22 \pm 0.02 \end{array}$	$\begin{array}{c c} l \ mode \\ n: \\ 0.07 \\ 0.10 \\ 0.12 \\ 0.14 \\ 0.31 \\ 0.49 \\ 0.60 \\ 0.60 \\ 0.60 \end{array}$	ls 3 ±0.01 ±0.02 ±0.03 ±0.06 ±0.08 ±0.08	$\begin{array}{c} 4 \\ 0.02 \\ \pm 0. \\ 0.03 \\ \pm 0. \\ 0.03 \\ \pm 0. \\ 0.04 \\ \pm 0. \\ 0.09 \\ \pm 0. \\ 0.17 \\ \pm 0. \\ 0.21 \\ \pm 0. \\ 0.26 \\ \pm 0. \end{array}$	00 0.01 00 0.01 01 0.01 01 0.02 02 0.03 03 0.06 03 0.08 04 0.10	5 ± 0.00 (± 0.00 (± 0.00 (± 0.00 (± 0.01 (± 0.01 (± 0.01 (± 0.02 ($\begin{array}{c} 6\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.01 \pm 0.00\\ 0.02 \pm 0.00\\ 0.03 \pm 0.00\\ 0.03 \pm 0.01\end{array}$	$\begin{array}{c} 7\\ 0.00 \pm 0.00\\ 0.01 \pm 0.00\\ 0.01 \pm 0.00\\ \end{array}$		
$ \begin{array}{r} z \setminus n \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ \end{array} $	$\begin{array}{c} 3\\ 0.73 \pm 0.03 \\ 0.78 \pm 0.03 \\ 0.79 \pm 0.03 \\ 0.79 \pm 0.05 \\ 0.86 \pm 0.03 \\ 0.80 \pm 0.09 \\ 0.87 \pm 0.05 \\ 0.85 \pm 0.08 \\ 0\end{array}$	$\begin{array}{c} 4\\ .50 \pm 0.05 \\ .59 \pm 0.05 \\ .66 \pm 0.03 \\ .64 \pm 0.05 \\ .72 \pm 0.04 \\ .77 \pm 0.04 \\ .77 \pm 0.04 \\ .83 \pm 0.03 \\ .81 \pm 0.07 \end{array}$	$5 \\ 0.30 \pm 0.04 \\ 0.36 \pm 0.04 \\ 0.41 \pm 0.04 \\ 0.47 \pm 0.04 \\ 0.50 \pm 0.03 \\ 0.59 \pm 0.02 \\ 0.60 \pm 0.06 \\ 0.65 \pm 0.03 \\ 0.66 \pm 0.04 \\ \end{array}$	$\begin{array}{c} & & \\ \hline 6 \\ 0.11 \pm 0.02 \\ 0.15 \pm 0.03 \\ 0.22 \pm 0.04 \\ 0.22 \pm 0.04 \\ 0.29 \pm 0.03 \\ 0.35 \pm 0.04 \\ 0.38 \pm 0.03 \\ 0.43 \pm 0.03 \\ 0.42 \pm 0.04 \end{array}$	$\begin{array}{c} \hline Polynomia \\ \hline 7 \\ \hline 0.04 \ \pm 0.01 \\ 0.05 \ \pm 0.01 \\ 0.06 \ \pm 0.01 \\ 0.09 \ \pm 0.02 \\ 0.12 \ \pm 0.02 \\ 0.18 \ \pm 0.03 \\ 0.20 \ \pm 0.02 \\ 0.22 \ \pm 0.02 \\ 0.22 \ \pm 0.03 \end{array}$	$\begin{array}{c c} l \ mode \\ n: \\ 0.07 \\ 0.10 \\ 0.12 \\ 0.14 \\ 0.31 \\ 0.49 \\ 0.60 \\ 0.60 \\ 0.64 \end{array}$	ls 3 ±0.01 ±0.02 ±0.03 ±0.06 ±0.08 ±0.08 ±0.08	$\begin{array}{c c} & 4 \\ \hline 0.02 & \pm 0. \\ 0.03 & \pm 0. \\ 0.04 & \pm 0. \\ 0.09 & \pm 0. \\ 0.17 & \pm 0. \\ 0.21 & \pm 0. \\ 0.26 & \pm 0. \\ 0.33 & \pm 0. \\ \end{array}$	00 0.01 00 0.01 01 0.01 01 0.02 02 0.03 03 0.06 03 0.08 04 0.10	5 ± 0.00 (± 0.01 (± 0.01 (± 0.01 (± 0.02 (± 0.02 ($\begin{array}{c} 6\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.00 \pm 0.00\\ 0.01 \pm 0.00\\ 0.02 \pm 0.00\\ 0.03 \pm 0.00\\ 0.03 \pm 0.01\\ 0.04 \pm 0.01\\ \end{array}$	$\begin{array}{c} 7 \\ 0.00 \pm 0.00 \\ 0.01 \pm 0.00 \\ 0.01 \pm 0.00 \\ 0.01 \pm 0.00 \\ 0.01 \pm 0.00 \end{array}$		

GENETICS: Conclusions

- The test-set results are better than for MILP-based method
- GENETICS still overestimates the feasible region
- Synthesized constraints have different syntax than the actual ones
 - GENETICS produces one out of many alternative models that fit training set
- Curse of dimensionality
 - When the number of variables becomes large GENETICS achieves worse results
 - Larger training set improves performance

Genetic One-Class Constraint Synthesis (GOCCS)

- An equivalent of GENETICS for 1-CSP
- Representation and operators are mostly the same
- The main differences consist of:
 - Validation set of unlabeled examples sampled prior to evolutionary run
 - The unlabeled examples are located from the known feasible examples
 - Two optimization criteria, both maximized:
 - The number of true positives
 - The number of true negatives
 - NSGA-II post-selection instead of Lexicase selection

Tomasz P. Pawlak, Krzysztof Krawiec, Synthesis of Constraints for Mathematical Programming with One-Class Genetic Programming, IEEE Transactions on Evolutionary Computation, IEEE Press, 2018. IF=10.629, 50p MNiSW

Mean angle between the corresponding constraints in the synthesized and the actual MP models

(C)			B	all n			Simplexn						Cuben					
	m n	3	4	5	6	7	m n	3	4	5	6	7	m n	3	4	5	6	7
models	100	1.01	1.18	1.29	1.36	1.40	100	0.40	0.50	0.50	0.62	0.67	100	0.58	0.56	0.64	0.69	0.73
mc	200	1.00	1.18	1.29	1.35	1.40	200	0.38	0.44	0.57	0.61	0.64	200	0.47	0.58	0.64	0.68	0.71
ar	300	0.99	1.17	1.29	1.35	1.38	300	0.36	0.42	0.51	0.63	0.66	300	0.50	0.60	0.64	0.70	0.70
Linear	400	1.00	1.18	1.28	1.35	1.39	400	0.34	0.43	0.50	0.60	0.67	400	0.47	0.57	0.61	0.71	0.70
Γ	500	1.00	1.17	1.28	1.34	1.39	500	0.33	0.44	0.53	0.58	0.71	500	0.52	0.60	0.63	0.71	0.72
s	m h	3	4	5	6	7	m n	3	4	5	6	7	m n	3	4	5	6	7
models	100	1.09	1.25	1.30	1.35	1.38	100	0.79	0.81	0.81	0.81	0.87	100	0.69	0.77	0.78	0.85	0.86
DO	200	1.06	1.22	1.31	1.33	1.37	200	0.75	0.80	0.80	0.80	0.90	200	0.71	0.77	0.79	0.82	0.87
	300	1.08	1.23	1.30	1.34	1.37	300	0.74_{-}	0.78	0.78	0.86	0.88	300	0.71	0.82	0.83	0.85	0.84
Poly.	400	1.07	1.23_{\pm}	1.29	1.34	1.37	400	0.72	0.82	0.81	0.80	0.93	400	0.72	0.77	0.81	0.84	0.84
Р	500	1.07	1.21_{\pm}	1.29	1.35	1.38	500	0.73_{\odot}	0.77	0.82	0.84	0.88	500	0.70	0.75	0.83	0.85	0.85

Mean sensitivity (D) and specificity (E) on test-set

(D)			B	alln			Simplexn						Cuben					
	m n	3	4	5	6	7	m n	3	4	5	6	7	m n	3	4	5	6	7
models	100	0.71	0.76	0.75	0.75	0.78	100	0.92	0.92	0.91	0.53.	0.05	100	0.47	0.48	0.54	0.53	0.53
QU	200	0.77	0.76	0.77	0.78	0.76	200	0.96	0.96	0.97	0.40	0.00	200	0.51	0.52	0.54	0.51	0.58
ar)	300	0.77	0.81	0.80	0.80	0.83	300	0.97	0.97	0.96	0.41	0.03	300	0.48	0.51	0.51	0.54	0.55
Linear	400	0.77	0.80	0.80	0.82	0.80	400	0.97	0.98	0.98	0.38	0.00	400	0.50	0.51	0.51	0.53	0.53
E	500	0.80	0.81	0.80	0.80	0.81	500	0.97	0.97	0.96	0.57.		500	0.51	0.48	0.54	0.51	0.58
	m h	3	4	5	6	7	m n	3	4	5	6	7	m n	3	4	5	6	7
lels	100	0.69	0.75	0.72	0.76	0.76	100	0.91	0.90	0.94	0.50.	0.07	100	0.48	0.51	0.53	0.56	0.51
models	200	0.75	0.78	0.76	0.76	0.78	200	0.95	0.95	0.96	0.35	0.03	200	0.54	0.49	0.53	0.55	0.58
ι. n	300	0.79	0.79	0.79	0.81	0.79	300	0.95	0.95	0.97	0.50	0.03	300	0.50	0.49	0.55	0.54	0.51
Poly.	400	0.82	0.82	0.80	0.82	0.81	400	0.96	0.96	0.98	0.42	0.00	400	0.51	0.55	0.53	0.55	0.56
Ч	500	0.81	0.80	0.81	0.83	0.81	500	0.96	0.96	0.94	0.57	0.07	500	0.49	0.48	0.52	0.52	0.58
(E)			B	alln					Sim	plexn					Cu	ıben		
	m h	3	4	5	6	7	m n	3	4	5	6	7	m n	3	4	5	(7
de j	100														- 4	5	6	
		0.90	0.91	0.94	0.96	0.97	100	0.98	0.98	1.00	1.00	0.99	100	0.88	0.90	0.91	0.92	0.93
models	200	0.90	0.91	0.94 0.95	0.96 0.97	0.97 0.98	100 200	0.98 0.98	0.98 0.99			· · ·	100 200					
ar mo	200 300			-	-		100 200 300	-	-	1.00	1.00	0.99	100 200 300	0.88	0.90	0.91	0.92	0.93
inear mo	200 300 400	0.94	0.94	0.95	0.97	0.98	100 200 300 400	0.98	0.99	1.00 1.00	1.00 1.00	<u>0.99</u> 1.00	100 200 300 400	0.88	0.90	0.91	0.92 0.93	0.93
Linear mo	200 300	0.94 0.96	0.94 0.95	0.95	0.97 0.97	0.98 0.98	100 200 300	0.98 0.98	0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	0.99 1.00 1.00	100 200 300	0.88 0.90 0.92	0.90 0.91 0.93	0.91 0.90 0.91	0.92 0.93 0.92	0.93 0.94 0.94
Linear	200 300 400	0.94 0.96 0.95	0.94 0.95 0.95	0.95 0.96 0.96	0.97 0.97 0.97	0.98 0.98 0.98	100 200 300 400	0.98 0.98 0.99	0.99 0.99 0.99	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	0.99 1.00 1.00 1.00	100 200 300 400	0.88 0.90 0.92 0.90	0.90 0.91 0.93 0.89	0.91 0.90 0.91 0.93	0.92 0.93 0.92 0.93	0.93 0.94 0.94 0.95
Linear	200 300 400 500 <i>m\n</i> 100	0.94 0.96 0.95 0.96	0.94 0.95 0.95 0.95	0.95 0.96 0.96 0.96	0.97 0.97 0.97 0.97	0.98 0.98 0.98 0.98	100 200 300 400 500	0.98 0.98 0.99 0.99	0.99 0.99 0.99 0.99	1.00 1.00 1.00 1.00 1.00	$ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 $	0.99 1.00 1.00 1.00 1.00	100 200 300 400 500	0.88 0.90 0.92 0.90 0.90	0.90 0.91 0.93 0.89 0.92	0.91 0.90 0.91 0.93 0.92	0.92 0.93 0.92 0.93 0.93 0.94	0.93 0.94 0.94 0.95 0.95
Linear	200 300 400 500 <i>m\n</i> 100 200	0.94 0.96 0.95 0.96 3	0.94 0.95 0.95 0.95 4	0.95 0.96 0.96 0.96 5	0.97 0.97 0.97 0.97 6	0.98 0.98 0.98 0.98 7	100 200 300 400 500 <i>m\n</i>	0.98 0.98 0.99 0.99 3	0.99 0.99 0.99 0.99 4	1.00 1.00 1.00 1.00 1.00 5	1.00 1.00 1.00 1.00 1.00 6	0.99 1.00 1.00 1.00 1.00 7	100 200 300 400 500 <u>m\n</u> 100 200	0.88 0.90 0.92 0.90 0.91 3	0.90 0.91 0.93 0.89 0.92 4	0.91 0.90 0.91 0.93 0.92 5	0.92 0.93 0.92 0.93 0.94 6	0.93 0.94 0.94 0.95 0.95 7
models Linear	200 300 400 500 <i>m\n</i> 100 200 300	0.94 0.96 0.95 0.96 3 0.92	0.94 0.95 0.95 0.95 4 0.92	0.95 0.96 0.96 0.96 5 0.95	0.97 0.97 0.97 0.97 6 0.97	0.98 0.98 0.98 0.98 7 0.98	100 200 300 400 500 <i>m\n</i> 100 200 300	0.98 0.98 0.99 0.99 3 0.97	0.99 0.99 0.99 0.99 4 0.98	1.00 1.00 1.00 1.00 5 1.00	$ \begin{array}{r} 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 6 \\ 1.00 \\ 6 \\ 1.00 \\ \end{array} $	0.99 1.00 1.00 1.00 1.00 7 1.00	100 200 300 400 500 <i>m\n</i> 100 200 300	0.88 0.90 0.92 0.90 0.91 3 0.88	0.90 0.91 0.93 0.89 0.92 4 0.90	0.91 0.90 0.91 0.93 0.92 5 0.93	0.92 0.93 0.92 0.93 0.94 6 0.93	0.93 0.94 0.94 0.95 0.95 7 0.94
models Linear	200 300 400 500 <i>m\n</i> 100 200	0.94 0.96 0.95 0.96 3 0.92 0.93	0.94 0.95 0.95 0.95 4 0.92 0.94	0.95 0.96 0.96 0.96 5 0.95 0.95	0.97 0.97 0.97 0.97 6 0.97 0.98	0.98 0.98 0.98 0.98 7 0.98 0.99	100 200 300 400 500 <u>m\n</u> 100 200	0.98 0.98 0.99 0.99 3 0.97 0.98	0.99 0.99 0.99 0.99 4 0.98 0.99	$ \begin{array}{r} 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 5 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ $	$ \begin{array}{r} 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 6 \\ \underline{1.00} \\ 1.00 \\ 1.00 \\ \end{array} $	0.99 1.00 1.00 1.00 1.00 7 1.00 <u>1.00</u>	100 200 300 400 500 <u>m\n</u> 100 200	0.88 0.90 0.92 0.90 0.91 3 0.88 0.88	0.90 0.91 0.93 0.89 0.92 4 0.90 0.93	0.91 0.90 0.91 0.93 0.92 5 0.93 0.93	0.92 0.93 0.92 0.93 0.94 6 0.93 0.94	0.93 0.94 0.95 0.95 7 0.94 0.94 0.94
Linear	200 300 400 500 <i>m\n</i> 100 200 300	0.94 0.96 0.95 0.96 3 0.92 0.93 0.95	0.94 0.95 0.95 0.95 4 0.92 0.94 0.94	0.95 0.96 0.96 0.96 5 0.95 0.95 0.96 0.96	0.97 0.97 0.97 0.97 6 0.97 0.98 0.97	0.98 0.98 0.98 0.98 7 0.98 0.99 0.99	100 200 300 400 500 <i>m\n</i> 100 200 300	0.98 0.98 0.99 0.99 3 0.97 0.98 0.98	0.99 0.99 0.99 0.99 4 0.98 0.99 0.99	$ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 5 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 $	$ \begin{array}{r} 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 6 \\ \underline{1.00} \\ 1.00 \\ 1.00 \\ \underline{1.00} \end{array} $	0.99 1.00 1.00 1.00 1.00 7 1.00 <u>1.00</u> <u>0.99</u>	100 200 300 400 500 <i>m\n</i> 100 200 300	0.88 0.90 0.92 0.90 0.91 3 0.88 0.89 0.91	0.90 0.91 0.93 0.89 0.92 4 0.90 0.93 0.93	0.91 0.90 0.91 0.93 0.92 5 0.93 0.93 0.93	0.92 0.93 0.92 0.93 0.94 6 0.93 0.94 0.94	0.93 0.94 0.95 0.95 7 0.94 0.94 0.96 0.96

GOCCS vs GENETICS: mean accuracy on test-set

- Training set of m_f = 500 feasible examples
- m_i is the number of extra infeasible examples supplied to the training set for GenetiCS

		GOCCS			GenetiC	S	
	Problem m_i :	0	100	200	300	400	500
	Ball3	0.95	0.93	0.96	0.96	0.97	0.97
	Ball4	0.95	0.92	0.95	0.96	0.97	0.97
	Ball5	0.96	0.92	0.95	0.96	0.97	0.98
	Ball6	0.97	0.91	0.95	0.96	0.97	0.97
	Ball7	0.98	0.91	0.95	0.96	0.97	0.97
ls	Simplex3	0.99	0.97	0.99	0.99	0.99	0.99
Linear models	Simplex4	0.99	0.97	0.98	0.99	0.99	0.99
Ĕ	Simplex5	1.00	0.97	0.98	0.99	0.99	0.99
21	Simplex6	1.00	0.96	0.98	0.98	0.99	0.99
ine	Simplex7	1.00	0.97	0.98	0.99	0.99	0.99
Г	Cube3	0.90.	0.97	0.99	0.99	0.99	0.99
	Cube4	0.92.	0.96	0.98	0.98	0.99	0.99
	Cube5	0.92	0.95	0.97	0.98	0.99	0.98
	Cube6	0.94	0.94	0.97	0.98	0.98	0.98
	Cube7	0.95	0.94	0.97	0.98	0.98	0.98
	Rank:	3.80	5.80	4.47	3.27	2.33	1.33
	Wilcoxon's p-v	alue:	0.19	0.82	0.16	0.02	0.02
	Ball3	0.95	0.94	0.96	0.96	0.97	0.97
	Ball4	0.96	0.93	0.95	0.96	0.97	0.97
	Ball5	0.96	0.92	0.95	0.97	0.97	0.97
	Ball6	0.98	0.90	0.95	0.97	-	0.97
	Ball7	0.98	0.91	0.95	0.96	0.97	0.97
S	Simplex3	0.98	0.96	0.98	0.99	0.99	0.99
ge	Simplex4	0.99	0.96	0.98	0.98	0.99	0.99
nomial models	Simplex5	1.00	0.96	0.98	0.98	0.99	0.99
al	Simplex6	1.00	0.97	0.98	0.99	0.99	0.99
E.	Simplex7	1.00	0.97	0.98	0.99	0.99	0.99
ŭ	Cube3	0.89.	0.96	0.99	0.99	0.99	0.99
Poly	Cube4	0.92	0.95	0.97	0.98	0.98	0.99
Ц	Cube5	0.93.	0.94	0.97	0.98	0.98	0.98
	Cube6	0.95	0.93	0.96	0.97	0.98	0.98
	Cube7	0.96	0.92	0.96	0.97	0.98	0.98
	Rank:	3.47	5.80	4.67	3.40	2.33	1.33
	Wilcoxon's p-v	alue:	0.01	0.97	0.67	0.11	0.02

Modeling of Wine Quality

- Wine Quality data set [1]
 - 11 physiochemical attributes of wine
 - A quality assessment [0-10] calculated as the median of the assessments made by at least three sensory assessors
 - 1599 red wine examples, 4898 white wine examples
 - 1-CSP

·		Red wine					White wine				
Variable	Meaning	Min	Mean	Max	Domain	Min	Mean	Max	Domain		
FA	Fixed acidity $g(\text{tartaric acid})/dm^3$	4.60	8.31	15.90	[4.589, 15.910]	3.80	6.84	14.20	[3.787, 14.292]		
VA	Volatile acidity $g(acetic acid)/dm^3$	0.12	0.53	1.58	[0.000, 1.666]	0.08	0.28	1.10	[0.080, 1.145]		
CA	Citric acid g/dm^3	0.00	0.27	1.00	[0.000, 1.000]	0.00	0.33	1.66	[0.000, 1.660]		
RS	Residual sugar g/dm^3	0.90	2.52	15.50	[0.757, 15.503]	0.60	5.91	65.80	[0.523, 66.151]		
С	Chlorides $g(\text{sodium chloride})/dm^3)$	0.01	0.09	0.61	[0.000, 0.612]	0.01	0.05	0.35	[0.000, 0.416]		
FSD	Free sulfur dioxide mg/dm^3	1.00	15.89	72.00	[1.000, 72.029]	2.00	34.89	289.00	[1.800, 289.327]		
TSD	Total sulfur dioxide mg/dm^3	6.00	46.83	289.00	[6.000, 289.019]	9.00	137.19	440.00	[8.947, 440.091]		
D	Density g/dm^3	0.99	0.997	1.00	[0.990, 1.004]	0.99	0.994	1.04	[0.987, 1.053]		
pH	pH	2.74	3.31	4.01	[2.719, 4.010]	2.72	3.20	3.82	[2.716, 3.821]		
S	Sulfates $g(\text{potassium sulfate})/dm^3$	0.33	0.66	2.00	[0.273, 2.005]	0.22	0.49	1.08	[0.198, 1.089]		
A	Alcohol vol.%	8.40	10.43	14.90	[8.400, 14.931]	8.00	10.59	14.20	[8.000, 14.205]		
Q	Quality (dependent variable)	3.00	5.62	8.00	[0.000, 10.000]	3.00	5.85	9.00	[0.000, 10.000]		

[1] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, "Modeling wine preferences by data mining from physicochemical properties" *Decision Support Systems* 47(4):547-553, 2009.

Wine QP models

Red wine

 $-0.01015FA^2 - 0.7481VA^2 - 1.681S^2 + 0.1639FA +$ max -1.836C-0.00197TSD-0.6832pH+3.819S+0.3003A+2.873 subject to -VA+C<01.669C-S<0 VA+pH+S<5.449 RS-3.455D-pH<2.712 3.192VA-RS-FSD<0 2.384CA-RS-C<0 VA+2.384RS+2.544C+TSD-5.717D-16.3A<11.95 0.2764FA+1.492VA+0.3844RS+C+D-pH+4.712S ≤ 9.153 2FA+CA+1.686RS+0.5031C+1.384FSD-TSD-4.384pH+ 2.384S-2A<3.415 FA-10.17VA+4.384CA-2.384RS-C+2.384FSD+TSD+ 2.384pH-2.384S>2.384

 $2.384FA + 0.4379VA + CA - 0.3844RS + 6.123C + 4.136FSD + \\ -0.3844TSD - D - 2S - 0.6764A \ge 0.1357$

White wine

 $\begin{array}{l} \max \ -0.02784 FA^2 - 1.234 CA^2 - 0.00007981 FSD^2 - 0.00002581 TSD^2 + \\ 0.4588 FA - 1.332 VA + 1.259 CA + 0.06963 RS + 0.01358 FSD + \\ 0.006554 TSD - 144.9 D + 0.8708 pH + 0.6428 S + 0.1996 A + 141.8 \end{array}$

subject to

D≤1.0052

VA−C≥0

 $CA+C-D \leq 0$

 $-VA+0.5283CA-RS-0.2167D+2pH+2A \ge 0.6499$

 $-4.786FA + 4.893C + 0.107TSD - 2.893pH + S + A \le 2$

 $-FA-VA-0.9435CA+2RS+2C+FSD-TSD+0.5283D{\leq}0.7209$

-2.8VA-1.951CA+0.051RS+C-0.0565TSD+1.528D+

 $2.264pH+0.04894S+A \ge 1.127$

 $\begin{array}{l} 0.2791 \text{FA}-0.1927 \text{VA}-3 \text{CA}+0.2791 \text{RS}+\text{C}+1.528 \text{FSD}-\text{TSD}+\\ -1.528 \text{D}+0.5283 \text{S}-\text{A}{\leq}0.1316 \end{array}$

The optimal solutions to the wine models

		R	ed wine		White wine		
	Optimal	Optimal	Most	Optimal	Most	Optimal	Most
	solution	w/extra	similar	in convex	similar	solution	similar
		constraints		hull			
FA	8.070	8.070	8.500	11.147	10.400	8.253	6.800
VA	0.000	0.000	0.340	0.362	0.410	0.080	0.150
CA	0.387	0.434	0.400	0.473	0.550	0.525	0.410
RS	3.675	4.145	4.700	4.332	3.200	35.387	12.900
С	0.000	0.000	0.055	0.084	0.076	0.000	0.044
FSD	14.917	2.155	3.000	19.905	22.000	80.237	79.500
TSD	6.000	6.000	9.000	53.379	54.000	141.983	182.000
D	0.998	0.996	0.997	0.995	1.000	0.987	0.997
pH	2.719	2.719	3.380	3.204	3.150	3.821	3.240
S	1.136	1.136	0.660	0.861	0.890	1.089	0.780
Α	14.931	14.931	11.600	14.183	9.900	14.205	10.200
Q (objective)	8.318	8.318	7.000	7.193	6.000	11.194	6.000
Distance to o	ptimal		2.992		0.632		2.534
Percentile in	dataset		99%		86%		79%

• Due to FSD > TSD in the optimal solution, we added extra constraints for the red wine model:

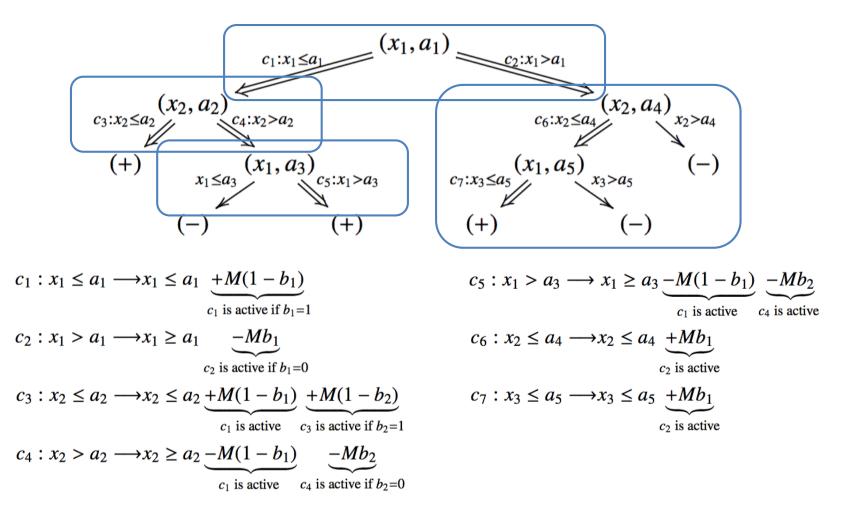
 $-FSD + TSD \ge 3$

 $\text{FSD} - 0.8571\text{TSD} \leq 0$


• They are based on the evidence in the data set that min TSD – FSD = 3 and max FSD/TSD = 0.8571

GOCCS: Conclusions

- GOCCS has good performance on low-dimensional 1-CSP
 - E.g., up to 6 7 variables
- GOCCS underestimates the feasible region
- GOCCS is susceptible to the curse of dimensionality
- The synthesized NLP models are oversize, however LP models have correct size


Constraint Synthesis with C4.5 (CSC4.5) for 1-CSP

• General idea: Build a decision tree and transform it to a MILP model

 Patryk Kudła, Tomasz P. Pawlak, One-class synthesis of constraints for Mixed-Integer Linear Programming with C4.5 decision trees, Applied Soft Computing 68 (2018) 1-12. IF=3.541, 40p MNiSW

A decision tree is a MILP model

CSC4.5 Results

Theoretical minimum 0.072rad

 $\overline{}$

Balln	Cuben	Simplexn			
Mean angle Recall Precision Jaccard Index Terms Terms Constraints Examples X		Mean angle Recall Precision Jaccard Index Jaccard Index Terms Terms Constraints Examples X			
100 32 191 0.683 0.823 0.804 1.029 200 38 242 0.729 0.811 0.879 1.027 3 300 45 311 0.746 0.803 0.915 1.025 400 52 392 0.761 0.816 0.919 1.017 500 56 462 0.766 0.815 0.927 1.006	100 16 57 0.874 0.983 0.887 0.000 200 14 44 0.946 0.997 0.948 0.000 3 300 13 38 0.968 0.998 0.970 0.000 400 13 35 0.977 0.998 0.979 0.000 500 12 36 0.982 0.999 0.984 0.000	100 33. 209. 0.583. 0.698. 0.783. 0.099. 200 43. 305. 0.640. 0.715. 0.861. 0.094. 3 300 51. 399. 0.650. 0.707. 0.892. 0.090 400 56. 452. 0.671. 0.716. 0.917. 0.088. 500 60. 500. 0.680. 0.720. 0.926. 0.087.			
100 48 354 0.547 0.713 0.704 1.122 200 64 570 0.601 0.705 0.806 1.120 4 300 77 757 0.621 0.700 0.849 1.118 400 90 961 0.635 0.703 0.868 1.118 500 95 1023 0.642 0.699 0.887 1.114	100 27 138 0.774 0.945 0.812 0.000 200 26 130 0.894 0.971 0.918 0.000 4 300 22 85 0.952 0.993 0.958 0.000 400 22 82 0.962 0.995 0.966 0.000 500 21 72 0.970 0.998 0.972 0.000	100 44 324 0.344 0.403 0.716 0.094 200 63 537 0.429 0.481 0.801 0.087 4 300 79 735 0.472 0.516 0.850 0.084 400 86 835 0.473 0.510 0.868 0.083 500 92 913 0.502 0.537 0.887 0.082			
100 58 511 0.423 0.595 0.604 1.165 200 80 851 0.470 0.563 0.741 1.173 5 300 102 1200 0.481 0.551 0.792 1.167 400 115 1484 0.490 0.548 0.824 1.180 500 126 1707 0.513 0.567 0.845 1.172	100 41 283 0.639 0.858 0.718 0.000 200 36 247 0.825 0.930 0.880 0.000 5 300 34 192 0.900 0.969 0.927 0.000 400 27 142 0.940 0.976 0.962 0.000 500 24 114 0.953 0.981 0.970 0.000	100 52 412 0.143 0.157 0.658 0.092 200 75 713 0.171 0.182 0.756 0.086 5 300 93 957 0.198 0.209 0.791 0.083 400 106 1175 0.225 0.236 0.834 0.082 500 116 1312 0.239 0.251 0.834 0.081			
100 71 750 0.280 0.360 0.567 1.206 200 98 1161 0.342 0.403 0.697 1.211 6 300 114 1501 0.343 0.383 0.770 1.213 400 138 1963 0.347 0.383 0.794 1.213 500 151 2209 0.376 0.412 0.815 1.215	100 41 340 0.516 0.662 0.709 0.000 200 46 371 0.745 0.854 0.852 0.000 6 300 44 320 0.828 0.903 0.908 0.000 400 37 238 0.885 0.935 0.944 0.000 500 36 215 0.902 0.943 0.953 0.000	100 57 505 0.028 0.029 0.494 0.091 200 81 796 0.045 0.046 0.665 0.085 6 300 98 1057 0.056 0.057 0.833 0.083 400 110 1213 0.059 0.060 0.752 0.082 500 127 1468 0.055 0.055 0.834 0.080			
100 74 795 0.177 0.210 0.539 1.245 200 102 1266 0.185 0.202 0.716 1.236 7 300 126 1774 0.216 0.231 0.766 1.242 400 148 2169 0.210 0.225 0.780 1.245 500 167 2520 0.202 0.213 0.808 1.247	100 45 421 0.361 0.449 0.689 0.003 200 59 567 0.612 0.717 0.815 0.000 7 300 59 541 0.684 0.779 0.852 0.000 400 50 410 0.808 0.863 0.927 0.000 500 46 350 0.833 0.872 0.947 0.000	100 55 456 0.003 0.003 0.117 0.097 200 83 814 0.006 0.006 0.167 0.086 7 300 100 1044 0.008 0.008 0.167 0.083 400 113 1250 0.011 0.012 0.183 0.082 500 129 1523 0.012 0.012 0.167 0.080			

Modeling of Wine Quality

- The same Wine Quality data set
 - Divided into training set and test set in roughly 50%:50%
 - Test set supplemented with unlabeled likely infeasible examples
- Red wine MIQP model
 - 517 constraints
 - 171 auxiliary binary variables
 - Jaccard index of feasible region calculated on test set: 0.90
- White wine MIQP model
 - 1373 constraints
 - 484 auxiliary binary variables
 - Jaccard index of feasible region calculated on test set: 0.91

The optimal solutions to the wine models

		Red	wine		White wine		
	Optimal	Most	Optimal	Most	Optimal	Most	
	solution	similar	in convex	similar	solution	similar	
			hull				
FA	8.070	5.900	8.711	8.400	8.239	6.800	
VA	0.120	0.440	0.367	0.340	0.080	0.150	
CA	0.000	0.000	0.608	0.420	0.490	0.410	
RS	1.400	1.600	0.903	2.100	65.800	12.900	
С	0.010	0.042	0.081	0.072	0.010	0.044	
FSD	3.000	3.000	23.429	23.000	85.088	79.500	
TSD	6.000	11.000	37.040	36.000	126.982	182.000	
D	0.991	0.994	1.004	0.994	0.990	0.997	
pH	2.740	3.480	2.740	3.110	3.820	3.240	
S	1.136	0.850	1.139	0.780	1.080	0.780	
Α	14.900	11.700	14.900	12.400	14.200	10.200	
Q (objective)	8.265	6.000	7.979	6.000	12.891	6.000	
Distance to op	ptimal	2.088		1.069		2.414	
Percentile in o	dataset	86%		86%		79%	

CSC4.5: Conclusions

- The synthesized MILP models may be non-convex w.r.t. the input variables
- The synthesized MILP models are oversize
- CSC4.5 is unable to model interactions between variables
- CSC4.5 is susceptible to the curse of dimensionality

Evolutionary Strategy-based One-Class Constraint Synthesis (ESOCCS) for 1-CSP

- General idea:
 - Model the distribution of the feasible states using Gaussian Mixture Model and Expectation Maximization
 - Sample the tail of that distribution for unlabeled and likely infeasible examples
 - Evolve a population of constraints using (μ + λ)-Evolutionary Strategy
 - Single-population cooperative co-evolution
 - Select a minimal subset of constraints from the population to produce an MP model

Tomasz P. Pawlak, Synthesis of Mathematical Programming models with one-class evolutionary strategies, Swarm and Evolutionary Computation, Elsevier, 2018 (in press). IF=3.893, 50p MNiSW

$(\mu+\lambda)$ -Evolutionary Strategy in a singlepopulation cooperative co-evolution mode

- Representation of a constraint:
 - Vector of weights w_i of predefined terms (e.g., variables)
 - A constant w₀
 - Vector of standard deviations σ_i corresponding to w_i
 - Vector of rotation angles α_{ij} corresponding to the pairs of w_i and w_j
- Population: a set of μ constraints
- Gaussian initialization $w_i \sim N(0,1)$

• Correlated mutation

$$\begin{aligned}
\forall_i : \sigma'_i \sim \sigma_i e^{\tau \cdot N} e^{\tau \cdot N(0,1)} & \text{Std. dev. mutation} \\
\forall_{ij} : \alpha'_{ij} \sim \beta \mathcal{N}(\alpha_{ij}, 1) & \text{Angles mutation} \\
\sum_{ij} = \begin{cases}
\sigma'^2_{ij} & i = j \\
\frac{1}{2} (\sigma'^2_i - \sigma'^2_j) \tan(2\alpha'_{ij}) & i > j \\
\frac{1}{2} (\sigma'^2_j - \sigma'^2_i) \tan(2\alpha'_{ji}) & i < j
\end{aligned}$$
Element of covariance matrix

$$w' \sim \mathcal{N}(w, \Sigma) & \text{Weights mutation,} \\
\forall_i : w'_i \sim \mathcal{U}(\{w^{(1)}_i, w^{(2)}_i\}) & \text{Discrete recombination of } w_i \\
\forall_i : \sigma'_i = \frac{1}{2} (\sigma^{(1)}_i + \sigma^{(2)}_i) & \text{Intermediate recombination of } \alpha_{ij}, \\
\end{aligned}$$

Constraint selection and fitness assessment

- Let P' be a constraint pool made of μ parent constraints and λ offspring constraints produced by the search operators
- Selection of the minimal subset of P' that maximize the number of correctly classified examples is a generalized set cover problem

$$\min \underbrace{\sum_{c_j \in P'}^{(a)} |X_{\overline{c_j}}| b_j}_{(a)} + \underbrace{\sum_{\mathbf{x}_k \in U}^{(b)} v_k}_{(b)} + \underbrace{0.0001 \sum_{c_j \in P'}^{(c)} b_j}_{(c)}$$
(1)

subject to

$$\forall \boldsymbol{x}_k \in U : \sum_{\substack{c_j \in P', \\ \neg c_j(\boldsymbol{x}_k)}} b_j + v_k \ge 1$$
(2)

• Where

 $\forall b_j, \forall v_j \in \{0, 1\},$

- (a) is the number of feasible examples violating the selected constraints
- (b) is the number of unlabeled examples satisfying the selected constraints
- (c) is the number of constraints
- This problem is solved optimally, thus the synthesized model is minimal
- The selected constraints are removed from P' and advance to the next generation population
- Constraint selection repeats until the next generation population is full 51

(a) Mean angle between the corresponding constraints(b) Jaccard index of the feasible regionsof the synthesized and the actual MP models

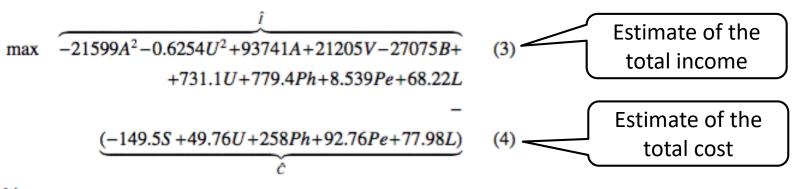
(a)			Ba	alln			Simplex <i>n</i> Cube <i>n</i>											
	$ X \setminus n$	3	4	5	6	7	$ X \setminus n$	3	4	5	6	7	$ X \setminus n$	3	4	5	6	7
sls	100	1.02.	1.12.	1.20.	1.20.	1.24.	100		0.19	0.29	0.39,	0.47	100	0.22,	0.41	0.52	0.64	0.69
ode	200		1.11.			1.22.	200	0.15.	0.15.	0.20.	0.25.	0.29.	200			0.36,		
LP models	300	1.03.	1.12.	1.16.	1.22.	1.23.	300	0.18,	0.16.	0.19.	0.22.	0.26.	300	0.17,	0.22.	0.27.	0.36,	0.45.
LF	400	1.02.	1.12.	1.17.	1.21.	1.23.	400	0.18,	0.17,	0.17.	0.21.	0.25.	400	0.17.	0.20,	0.27.	0.30.	0.39.
	500	1.01.	1.12.	1.19	1.21.	1.24.	500	0.17.	0.17.	0.18.	0.21.	0.24.	500	0.18,	0.22.	0.25.	0.29.	0.37.
s	$ X \setminus n$	3	4	5	6	7	$ X \setminus n$	3	4	5	6	7	$ X \setminus n$	3	4	5	6	7
QCQP models	100	-	0.61				100				0.93,		100			0.73,		
mo	200		0.571				200				0.82.		200			0.60		
QP	300		0.561				300				0.80.		300			0.50,		
Š	400		0.51				400				0.85.		400			0.46,		
	500	0.48	0.51		0.56	0.67	500	0.51.			0.82,	0.87.	500	0.42.		0.43	0.50,	0.52,
(b)			Ba	alln						plexn						ıben		
	$ X \setminus n$	3	4	5	6	7	$ X \setminus n$	3	4	5	6	7	$ X \setminus n$	3	4	F	6	7
-																5	6	-
lels	100	0.70.	0.49,				100				0.141		100	0.78.	0.52,	0.34.	0.15.	0.07.
nodels	100 200	0.70. 0.77.	0.63.	0.50.	0.35,	0.22.	100 200	0.84.	0.71,	0.531	0.221	0.13	100 200	0.78. 0.85.	0.52, 0.71,	0.34, 0.54,	0.15. 0.34,	0.07. 0.19.
P models	100 200 300	0.70. 0.77. 0.82.	0.63. 0.70.	0.50. 0.57.	0.35. 0.44.	0.22. 0.36,	100 200 300	0.84 0.85	0.71. 0.74.	0.53 0.62	0.221 0.361	0.13 0.03	100 200 300	0.78. 0.85. 0.87.	0.52, 0.71, 0.77,	0.34, 0.54, 0.63,	0.15. 0.34, 0.46,	0.07. 0.19. 0.30.
LP models	100 200 300 400	0.70, 0.77, 0.82, 0.83,	0.63. 0.70. 0.72.	0.50. 0.57. 0.60.	0.35. 0.44. 0.47.	0.22. 0.36, 0.38,	100 200 300 400	0.84. 0.85. 0.87.	0.71. 0.74. 0.74.	0.531 0.621 0.611	0.22 0.36 0.41	0.13 0.03 0.03	100 200 300 400	0.78, 0.85, 0.87, 0.89,	0.52, 0.71, 0.77, 0.79,	0.34, 0.54, 0.63, 0.68,	0.15. 0.34, 0.46, 0.51,	0.07. 0.19, 0.30, 0.35,
LP models	100 200 300 400 500	0.70. 0.77. 0.82. 0.83. 0.85.	0.63. 0.70. 0.72. 0.74.	0.50. 0.57. 0.60. 0.63.	0.35. 0.44. 0.47. 0.53.	0.22. 0.36, 0.38, 0.42,	100 200 300 400 500	0.84. 0.85. 0.87. 0.89.	0.71, 0.74, 0.74, 0.76,	0.531 0.621 0.611 0.651	0.22 0.36 0.41 0.33	0.131 0.031 0.031 0.071	100 200 300 400 500	0.78. 0.85. 0.87. 0.89. 0.90.	0.52, 0.71, 0.77, 0.79, 0.80,	0.34, 0.54, 0.63, 0.68, 0.70,	0.15. 0.34, 0.46, 0.51, 0.55,	0.07. 0.19. 0.30. 0.35. 0.41.
	100 200 300 400 500 X \n	0.70. 0.77. 0.82. 0.83. 0.85. 3	0.63 0.70 0.72 0.74 4	0.50. 0.57. 0.60. 0.63. 5	0.35, 0.44, 0.47, 0.53, 6	0.22. 0.36. 0.38. 0.42. 7	100 200 300 400 500 X \n	0.84. 0.85. 0.87. 0.89. 3	0.71, 0.74, 0.74, 0.76, 4	0.53 0.62 0.61 0.65 5	0.221 0.361 0.411 0.331 6	0.131 0.031 0.031 0.071 7	100 200 300 400 500 X \n	0.78. 0.85. 0.87. 0.89. 0.90. 3	0.52, 0.71, 0.77, 0.79, 0.80, 4	0.34, 0.54, 0.63, 0.68, 0.70, 5	0.15. 0.34, 0.46, 0.51, 0.55, 6	0.07. 0.19. 0.30, 0.35, 0.41, 7
	100 200 300 400 500 X \n 100	0.70. 0.77. 0.82. 0.83. 0.85. 3 0.84.	0.63 0.70 0.72 0.74 4 0.75	0.50. 0.57. 0.60. 0.63. 5 0.64.	0.35. 0.44. 0.47. 0.53. 6 0.54.	0.22. 0.36. 0.38. 0.42. 7 0.46.	$ \begin{array}{r} 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ \hline X \setminus n \\ 100 \end{array} $	0.84. 0.85. 0.87. 0.89. 3 0.66,	0.71, 0.74, 0.74, 0.76, 4 0.33,	0.53 0.62 0.61 0.65 5 0.13	0.22 0.36 0.41 0.33 6 0.06	0.131 0.031 0.031 0.071 7 0.02,	100 200 300 400 500 X \n 100	0.78. 0.85. 0.87. 0.89. 0.90. 3 0.77,	0.52, 0.71, 0.77, 0.79, 0.80, 4 0.64,	0.34, 0.54, 0.63, 0.68, 0.70, 5 0.53,	0.15. 0.34, 0.46, 0.51, 0.55, 6 0.42,	0.07. 0.19. 0.30. 0.35. 0.41. 7 0.29,
	100 200 300 400 500 X \n 100 200	0.70. 0.77. 0.82. 0.83. 0.85. 3 0.84. 0.89.	0.63. 0.70. 0.72. 0.74. 4 0.75. 0.83.	0.50. 0.57. 0.60. 0.63. 5 0.64. 0.75.	0.35. 0.44. 0.47. 0.53. 6 0.54. 0.68.	0.22. 0.36, 0.38, 0.42, 7 0.46, 0.62,	100 200 300 400 500 X \n 100 200	0.84 0.85 0.87 0.89 3 0.66 0.75	0.71, 0.74, 0.74, 0.76, 4 0.33, 0.50,	0.53 0.62 0.61 0.65 5 0.13 0.24	0.22 0.36 0.41 0.33 6 0.06 0.11	0.13 0.03 0.03 0.07 1 0.07 0.02, 0.02,	100 200 300 400 500 X \n 100 200	0.78. 0.85. 0.87. 0.89. 0.90. 3 0.77. 0.85.	0.52, 0.71, 0.77, 0.79, 0.80, 4 0.64, 0.73,	0.34, 0.54, 0.63, 0.68, 0.70, 5 0.53, 0.66,	0.15. 0.34, 0.46, 0.51, 0.55, 6 0.42, 0.58,	0.07. 0.19. 0.30, 0.35, 0.41, 7 0.29, 0.49,
	$ \begin{array}{r} 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ \hline [X] \setminus n \\ 100 \\ 200 \\ 300 \\ \end{array} $	0.70. 0.77. 0.82. 0.83. 0.85. 3 0.84. 0.89. 0.91.	0.63 0.70 0.72 0.74 4 0.75 0.83 0.83	0.50. 0.57. 0.60. 0.63. 5 0.64. 0.75. 0.81.	0.35. 0.44. 0.47. 0.53. 6 0.54. 0.68. 0.74.	0.22. 0.36. 0.38. 0.42. 7 0.46. 0.62. 0.68.	$ \begin{array}{r} 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ \hline [X] \setminus n \\ 100 \\ 200 \\ 300 \\ \end{array} $	0.84 0.85 0.87 0.89 3 0.66 0.75 0.78	0.71, 0.74, 0.74, 0.76, 4 0.33, 0.50, 0.60,	0.53 0.62 0.61 0.65 5 0.13 0.24 0.24	0.22 0.36 0.41 0.33 6 0.06 0.11 0.19	0.13 0.03 0.03 0.07 0.07 0.02 0.02 0.02	100 200 300 400 500 X \n 100 200 300	0.78. 0.85. 0.87. 0.89. 0.90. 3 0.77. 0.85. 0.87.	0.52, 0.71, 0.77, 0.79, 0.80, 4 0.64, 0.73, 0.80,	0.34, 0.54, 0.63, 0.68, 0.70, 5 0.53, 0.66, 0.73,	0.15. 0.34, 0.46, 0.51, 0.55, 6 0.42, 0.58, 0.64,	0.07. 0.19. 0.30. 0.35. 0.41. 7 0.29, 0.49, 0.58,
QCQP models LP models	100 200 300 400 500 X \n 100 200	0.70. 0.77. 0.82. 0.83. 0.85. 3 0.84. 0.89. 0.91. 0.92.	0.63. 0.70. 0.72. 0.74. 4 0.75. 0.83.	0.50. 0.57. 0.60. 0.63. 5 0.64. 0.75. 0.81. 0.82.	0.35. 0.44. 0.47. 0.53. 6 0.54. 0.68. 0.74. 0.75.	0.22. 0.36, 0.38, 0.42, 7 0.46, 0.62, 0.68, 0.72,	100 200 300 400 500 X \n 100 200	0.84. 0.85. 0.87. 0.89. 3 0.66. 0.75. 0.78. 0.80.	0.71, 0.74, 0.74, 0.76, 4 0.33, 0.50, 0.60, 0.65,	0.53 0.62 0.61 0.65 5 0.13 0.24 0.24 0.40 0.41	0.22 0.36 0.41 0.33 6 0.06 0.11	0.13 0.03 0.03 0.07 0.07 0.02 0.02 0.02 0.02	100 200 300 400 500 X \n 100 200	0.78. 0.85. 0.87. 0.89. 0.90. 3 0.77. 0.85. 0.87. 0.88.	0.52, 0.71, 0.77, 0.79, 0.80, 4 0.64, 0.73, 0.80, 0.83,	0.34, 0.54, 0.63, 0.68, 0.70, 5 0.53, 0.66,	0.15. 0.34, 0.46, 0.51, 0.55, 6 0.42, 0.58, 0.64, 0.68,	0.07. 0.19. 0.30. 0.35. 0.41. 7 0.29, 0.49, 0.49, 0.58, 0.57,

					LP models					
	Constrai	nt count	Mean	angle	Jaccard	index	Test-set p	precision	Test-se	t recall
Problem	ESSOCS	GOCCS	ESSOCS	GOCCS	ESSOCS	GOCCS	ESSOCS	GOCCS	ESSOCS	GOCCS
Ball3	12.20.	9.30,	1.03.	0.99,	0.82	0.51	0.87.	0.61	0.93	0.77.
Ball4	16.13	11.87	1.12	1.17.	0.70	0.25	0.77.	0.27	0.87	0.81.
Ball5	19.43	13.10	1.16.	1.29.	0.57	0.10.	0.64.	0.11.	0.83	0.80.
Ball6	22.37	13.70	1.22	1.35	0.44.	0.04	0.50,	0.04	0.79.	0.79.
Ball7	25.73	14.17	1.23	1.38	0.36,	0.01	0.41	0.02	0.76,	0.82,
Simplex3	6.27.	5.33.	0.18,	0.36	0.85	0.591	0.87.	0.601	0.97	0.97
Simplex4	7.77.	7.17,	0.16.	0.42	0.74,	0.231	0.76,	0.231	0.96	0.97
Simplex5	9.63,	7.67	0.19	0.51	0.62	0.08	0.661	0.08	0.90	0.96,
Simplex6	12.07	7.90	0.22	0.63	0.36	0.02	0.36	0.02	0.571	0.371
Simplex7	13.67	7.63,	0.26.	0.66	0.031	0.00	0.031	0.00	0.031	0.031
Cube3	8.00,	6.07.	0.17,	0.50	0.87	0.20	0.91	0.291	0.96	0.48
Cube4	10.03	7.30.	0.22	0.60	0.77.	0.09.	0.81	0.10.	0.94	0.51,
Cube5	12.60,	8.60,	0.27.	0.64	0.63	0.03	0.66,	0.03	0.92	0.51
Cube6	15.30,	9.20	0.36,	0.70,	0.46,	0.01	0.48,	0.01	0.90	0.54
Cube7	19.07	9.93	0.45,	0.70,	0.30,	0.00	0.31,	0.00	0.86,	0.55
p-value:	p-value: 0.001			01	0.0	01	0.0	01	0.0	20

LP models

NLP models

	Constrain	nt count	Mean	angle	Jaccard	index	Test-set p	precision	1	
Problem	ESSOCS	GOCCS	ESSOCS	GOCCS	ESSOCS	GOCCS	ESSOCS	GOCCS	ESSOCS	GOCCS
Ball3	4.83.	9.63	0.471	1.08,	0.91	0.49	0.95	0.57	0.96	0.79.
Ball4	7.47	12.70	0.561	1.23,	0.85	0.24	0.91	0.26	0.93	0.78.
Ball5	9.77	14.73	0.621	1.30.	0.81	0.10.	0.87	0.10.	0.92	0.79.
Ball6	12.63	15.03	0.68,	1.34.	0.74,	0.04	0.82	0.04	0.88	0.81.
Ball7	16.97	15.30	0.80,	1.37.	0.68,	0.02	0.78,	0.02	0.85,	0.79
Simplex3	8.33,	7.07	0.53.	0.741	0.78,	0.521	0.81,	0.541	0.95	0.95
Simplex4	12.60	8.60	0.66,	0.781	0.60,	0.24	0.63,	0.241	0.93.	0.95
Simplex5	16.90	9.63	0.73,	0.78	0.40	0.11	0.431	0.11	0.90	0.97.
Simplex6	21.30	9.43	0.80,	0.86	0.191	0.02.	0.191	0.02.	0.581	0.501
Simplex7	22.701	8.47	0.84,	0.88	0.02,	0.00	0.02,	0.00	0.031	0.031
Cube3	4.57.	6.57,	0.38	0.71	0.87	0.18,	0.90.	0.23	0.96	0.50
Cube4	5.87,	8.03	0.46,	0.82	0.80.	0.08.	0.84.	0.09.	0.95	0.49
Cube5	7.13	8.70,	0.50,	0.83	0.73	0.03	0.77.	0.03	0.93	0.55
Cube6	8.83	9.63	0.54,	0.85	0.64,	0.02	0.69,	0.02	0.95 3	0.54
Cube7	9.67	10.87	0.58,	0.84	0.58.	0.01	0.62.	0.01	0.90.	0.51
p-value: 0.977			0.0	0.001 0.001			0.0	01	0.005	


Modeling Rice Production

- Rice production in India data set [1]
 - Heavily preprocessed in this work
 - Variables in absolute units recalculated relatively to the farm area
 - Ordinal variables transformed into integers
 - Six output variables aggregated into two variables
 - 1022 examples of rice farms

	-			-		
Variable	Meaning	Min	Q1	Median	Q3	Max
Α	Cultivated area in ha	0.01	0.14	0.29	0.50	5.32
V	Varieties (0: traditional, 1: mixed, 2: high yield)	0.00	0.00	0.00	2.00	2.00
В	BIMAS intensification program (0: no, 1: mixed, 2: yes)	0.00	0.00	0.00	0.00	2.00
S	Volume of seed in <i>kg/ha</i>	4.00	29.48	37.50	48.08	371.43
U	Volume of urea in kg/ha	0.87	154.14	214.29	286.87	877.19
Ph	Volume of phosphate in kg/ha	0.00	42.80	75.11	128.35	877.19
Pe	Volume of pesticide in kg/ha	0.00	0.00	0.00	942.86	43,697.03
L	Total labor in h/ha	108.00	699.48	966.53	1,272.55	4,551.72
С	Total cost in INR/ha	20,287.37	69,675.35	123,180.38	223,738.79	4,857,220.17
Ι	Total income in INR/ha	28,000.00	164,697.18	237,968.94	427,528.69	1,746,987.95

[1] Q.Feng, W.C.Horrace, Alternative technical efficiency measures: Skew, bias and scale, Journal of Applied Econometrics 27 (2) (2012) 253-268.

Rice production QP model

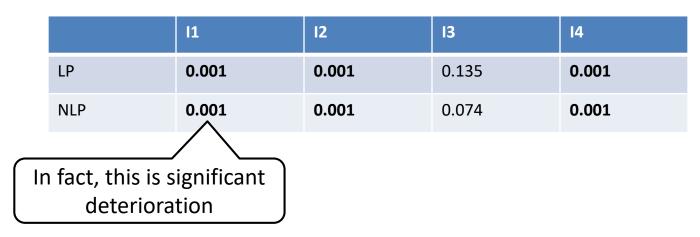
subject to

 $-87.84V-11.5B+S+0.3381U+0.6441Ph-0.1722Pe-0.3423L \le 301.3$ 75.72A-33.16V-21.48S+U+0.5544Ph+0.01055Pe+0.2889L \le 495.4 -6.078V+334.4B+S+0.6648U-2.984Ph+0.002483Pe+0.1672L \le 1007 20.87V+37.19B+0.4437S-U+0.5195Ph+0.003986Pe-0.0335L \le 85.85 294.8V+71.26B+S+0.2821U-0.3932Ph+0.005128Pe+0.1388L \le 1248 18.85A-38.95V+82.20B+0.2634S+U+0.9Ph+0.014Pe-0.8153L \le 536.8 A+6.985V-172.9B+0.1739S+0.005549U+0.02464Ph+ -0.000835Pe-0.004814L \le 69.63 -4.498A-27.02V-B+0.07315S+0.02994U+0.04390Ph+ 0.0006084Pe+0.01309L < 65.39

The optimal solutions to the rice production model(s)

- Three cases of farmer's budget:
 - Q1, Median, Q3 cost in the data set
 - Modeled using an extra constraint on the cost estimate $\hat{\mathsf{C}}$

Variable	$\hat{C} \leq Q1$	$\hat{C} \leq Median$	$\hat{C} \leq Q3$	Variable	Most similar
Α	0.29	0.29	0.29	Α	0.29
V	2.00	2.00	2.00	V	2.00
B	0.00	0.00	0.00	В	0.00
S	277.26	264.12	239.43	S	87.41
\boldsymbol{U}	411.51	411.51	411.51	U	349.65
Ph	258.08	392.83	646.08	Ph	174.83
Pe	0.00	0.00	0.00	Pe	0.00
L	308.67	523.84	928.23	L	559.44
Ĉ	69,675.35	123,180.38	223,738.79	С	156,924.48
Î	484,598.66	604,294.20	829,252.37	Ι	503,496.50
$\hat{I} - \hat{C}$	414,923.31	481,113.82	605,513.58	I - C	346,572.02
Distance	1.08	1.00	1.37		


ESOCCS² – five improvements to ESOCCS

- I1: Estimation of distribution of feasible states using Kernel Density Estimation (KDE) instead of Expectation Maximization (EM)
 - The assumption that the actual distribution is a Gaussian Mixture may be false
 - KDE is non-parametric estimation method
 - It difficult to estimate bandwidth matrix for KDE and many approaches exist
 - We used Silverman's rule
- I2: Denser sampling of unlabeled examples
 - In ESOCCS the density of a sample of unlabeled examples decreases with dimensionality
 - ESOCCS² increases the sample size to reduce the decrease rate
- I3: Bounding-box initialization
 - The initial population is supplemented with bounding-box of the training set
- I4: Reuse of constraints in successively built models
 - The constraints are not removed from the pool, but use of some subsets of constraints together is forbidden
- I5: Prevention from degenerate empty models
 - Degenerated models are explicitly prohibited by new formulation of the generalized set cover problem

Tomasz P. Pawlak, Performance Improvements for Evolutionary Strategy-based One-Class Constraint Synthesis, GECCO'18, ACM, 2018.

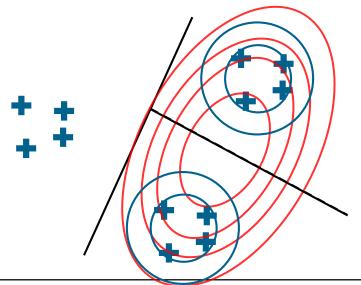
ESOCCS vs ESOCCS²

- In total 23 combinations of I1 I4 applied to ESOCCS are verified
- The p-values of the Wilcoxon signed rank test for significance of differences in Jaccard indexes of the feasible regions for each of I1 – I4:

• ESOCCS with the combination of I2, I3, I4 is significantly better than bare ESOCCS and 16 other setups in LP models and 17 other setups in NLP models

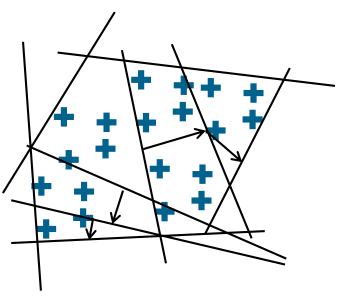
ESOCCS: conclusions

- A fully configurable type of the synthesized model
- Good generalization performance and handling of noise
- Significant computation cost due to solving the set cover problem
- The curse of dimensionality is still an issue
- KDE (I1) failed probably due to inadequate algorithm for calculating bandwidth matrix

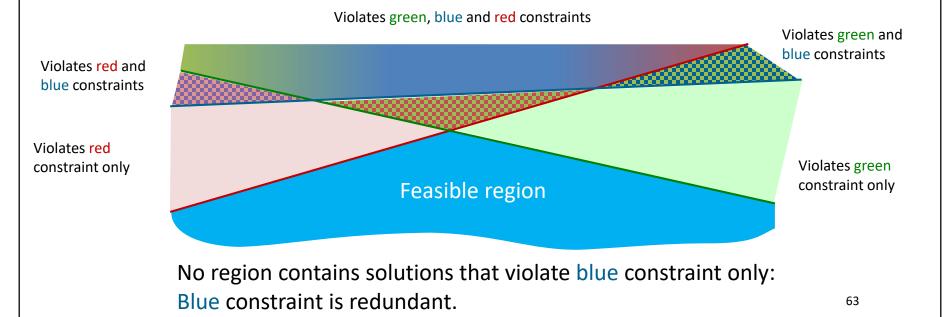

One-Class Constraint Acquisition with Local Search (OCCALS) for 1-CSP

- General idea:
 - Partition the training set using x-means
 - Find an LP model for each partition using local search
 - Remove redundant constraints in each LP model independently
 - Create a MILP model implementing alternative of the individual LP models

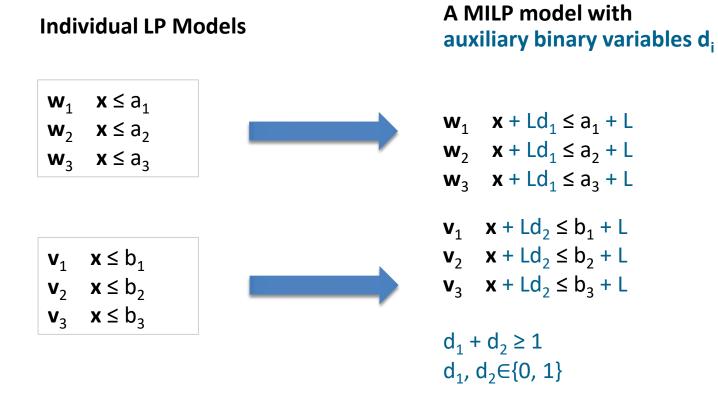
• Daniel Sroka, Tomasz P. Pawlak, One-Class Constraint Acquisition with Local Search, GECCO '18, ACM, 2018.


Training set partitioning using x-means

- Make an initial partitioning using k-means with a fixed k
 - E.g., k = 2
- Split each partition P_i further into P'_i and P''_i using k-means with k=2
- If $BIC(P'_i, P''_i) > BIC(P_i)$ then
 - Replace P_i with P'_i and P''_i
 - \bullet Repeat these steps for $P_i^{\,\prime}$ and $P_i^{\,\prime\prime}$
- BIC is Bayesian Information Criterion under Gaussian Mixture

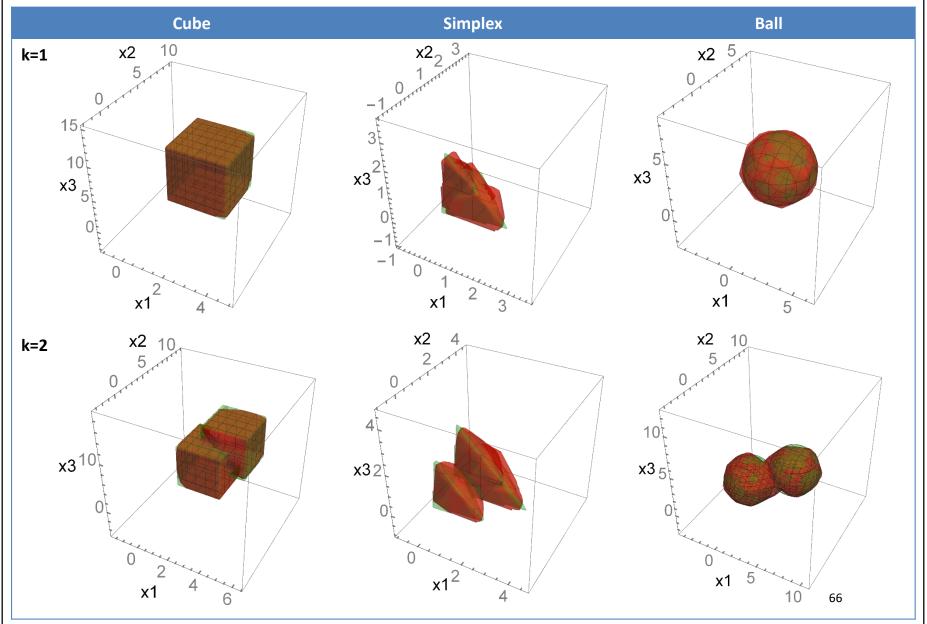

Local search of LP constraints

- For each partition c_{max} constraints are sought independently
- Local search finds one constraint at time
- The initial weights of a constraint are random
- Local search minimizes the number of false negatives
- Step size decreases with true positives



Removal of redundant constraints

• The same approach like in GENETICS is taken


A MILP model implementing an alternative of LP models

L is a big constant

		F1		MC	С
		OCCALS	GOCCS	OCCALS	GOCCS
	Cube ₂ ¹	0.991	0.467	0.991	0.434
	$Cube_3^I$	0.975	0.301	0.975	0.287
	$Cube_4^1$	0.968	0.140.	0.968	0.173.
OCCALS vs GOCCS	Cube ₅ ¹	0.953	0.062	0.954	0.115
	Cube ₆ ¹	0.909	0.031	0.915.	0.084
	Simplex ¹ ₂	0.898	0.954	0.890	0.950
	Simplex ¹ ₃	0.792	0.768	0.805	0.789
 F₁ score on test set 	$Simplex_4^1$	0.691	0.401	0.722	0.491
±	Simplex ¹ ₅	0.608	0.120	0.653	0.227
 MCC – Matthew's Correlation Coefficient 		0.488	0.037.	0.565	0.096
on test set	Ball_2^1	0.985	0.861.	0.982	0.832.
	$Ball_{3}^{1}$	0.959	0.749.	0.958	0.735.
 1 – ideal classification 	$\operatorname{Ball}_{4}^{1}$	0.921	0.464	0.921	0.502.
 0 – random classification 	$\operatorname{Ball}_{5}^{1}$	0.875	0.254	0.875	0.341.
	Ball ¹	0.816	0.099,	0.819	0.196
 -1 – anti-ideal classification 	Cube ₂ ²	0.984	0.411	0.984	0.446
	Cube ₃ ²	0.936 _	0.175.	0.937 _	0.267.
	$Cube_4^2$	0.877	0.061	0.880	0.150
 The p-values for Wilcoxon signed-rank 	Cube ² ₅	0.815	0.017	0.831	0.075
	Cube ₆ ²	0.941	0.005	0.947	0.040
test for differences	Simplex ²	0.920	0.905	0.905	0.886
	Simplex ²	0.822	0.640.	0.829 _	0.662.
	Simplex ²	0.704	0.302.	0.731	0.402.
	Simplex ²	0.588	0.099.	0.637	0.203,
	Simplex ₆ ²	0.651	0.014.	0.697	0.023,
	$Ball_2^2$	0.968	0.788.	0.961	0.739
	Ball_3^2	0.939 _	0.629	0.937 _	0.636.
	Ball_4^2	0.902	0.303	0.901	0.385
	Ball ²	0.853	0.113,	0.854	0.211,
	Ball ₆	0.781.	0.025	0.788	0.095
	Ranks	1.033	1.967	1.033	1.967
	p-value	0.00	00	0.00)0

Visualization of the synthesized models

OCCALS: conclusions

- The most successful algorithm so far
- Quick and fast
- Good generalization performance and noise handling
- An improved version is under development

General conclusions

- Mathematical Programming (MP) is a common formalism for optimization methods, well-recognized both in business and academia
- Surprisingly, most of the MP models are handcrafted and the synthesis of MP models from data is underrepresented in literature
- We formally defined several variants of the synthesis problem, including 1-CSP and 2-CSP
- 2-CSP problem is known to be NP-hard
- 1-CSP is more practical due to no need for infeasible examples, but it is also more difficult to solve than 2-CSP
- We proposed several heuristic approaches to solve both 1-CSP and 2-CSP

Future research directions

- Drop requirement for second-class examples in some of the presented algorithms
- Design novel performance measures calculable using feasible examples only
- Design more objective experimental protocol for real-world data